000893313 001__ 893313
000893313 005__ 20240712112816.0
000893313 0247_ $$2Handle$$a2128/28142
000893313 037__ $$aFZJ-2021-02687
000893313 1001_ $$0P:(DE-Juel1)179011$$aSzczuka, Conrad$$b0$$eCorresponding author$$ufzj
000893313 1112_ $$aAMPERE NMR School$$cvirtual$$d2021-06-21 - 2021-06-23$$wPoland
000893313 245__ $$aNMR and EPR characterization of V2O5 as a cathode material for high-capacity Li-ion batteries
000893313 260__ $$c2021
000893313 3367_ $$033$$2EndNote$$aConference Paper
000893313 3367_ $$2BibTeX$$aINPROCEEDINGS
000893313 3367_ $$2DRIVER$$aconferenceObject
000893313 3367_ $$2ORCID$$aCONFERENCE_POSTER
000893313 3367_ $$2DataCite$$aOutput Types/Conference Poster
000893313 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1626100340_10312$$xOther
000893313 520__ $$aLi-ion batteries are the key technology for the electrification of the transport sector. Their enhancement requires fundamental understanding of the battery chemistry involving solid-state and interface reactions and processes. NMR and EPR were succesfully applied to investigate battery materials in many cases [1,2], however, mostly independent from each other. Here, both techniques are applied to investigate the cathode material V2O5. We exploit the strengths of EPR to target dilute surface defects and monitor redox reactions, and the strengths of NMR to identify phase transitions and the local surrounding of the nuclei under investigation.
000893313 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000893313 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$ufzj
000893313 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
000893313 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b3$$ufzj
000893313 8564_ $$uhttps://juser.fz-juelich.de/record/893313/files/AMPERE2021_Abstract_Szczuka.pdf$$yOpenAccess
000893313 8564_ $$uhttps://juser.fz-juelich.de/record/893313/files/Poster_AMPERE2021_Szczuka.pdf$$yOpenAccess
000893313 909CO $$ooai:juser.fz-juelich.de:893313$$pdriver$$pVDB$$popen_access$$popenaire
000893313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179011$$aForschungszentrum Jülich$$b0$$kFZJ
000893313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
000893313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000893313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b3$$kFZJ
000893313 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000893313 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000893313 9141_ $$y2021
000893313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893313 920__ $$lyes
000893313 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000893313 9801_ $$aFullTexts
000893313 980__ $$aposter
000893313 980__ $$aVDB
000893313 980__ $$aUNRESTRICTED
000893313 980__ $$aI:(DE-Juel1)IEK-9-20110218
000893313 981__ $$aI:(DE-Juel1)IET-1-20110218