NMR and EPR characterization of V_2O_5 as a cathode material for high-capacity Li-ion batteries

Conrad Szczuka^{a,b}, Peter Jakes^a, Rüdiger-A. Eichel^{a,b} and Josef Granwehr^{a,c}

^aInstitute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, Jülich, Germany ^bInstitute of Physical Chemistry, RWTH Aachen University, Aachen, Germany

^cInstitute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany

— Defects through oxygen loss

• the drying process causes stoichiometric V₂O₅ to degas oxygen

$$O_0^{x} + 2 V_V^{x} \rightarrow \frac{1}{2} O_2 + \square_0^{"} + 2 V_V'$$

- excess electrons are found close to the oxygen vacancy [1]
- [cluster]/[isolated] = 8/1

In operando cwEPR of ε and δ phase

With increasing Li concentration:

- (1) Amplitude $\sim \chi$, $M_{x,y}$
- (2) e⁻-e⁻ dipolar broadening
- (3) Heisenberg exchange

1st voltage plateau

electron spins are well separated:

- -> linear amplitude increase
- -> constant linewidth

2nd voltage plateau

broadening and amplitude decrease e.g. anti-ferromagnetic ordering [2]

E— Liberated vanadyl species

- upon the δ to γ -Li_xV₂O₅ phase transition, vanadyl species are liberated from the host structure by fracturing [4]
- a few percent of the total V conc. [4]
- ENDOR and DFT: ethylene glycol dianion as ligand

B

Initial discharge: Li_{0.03}V₂O₅

Li reduces the host material with electrons located at V atoms

ENDOR:

coupling to Li, but also strongly to ¹H and ¹⁹F, suggesting the electrons location to be at the surface

Ex situ MAS NMR

⁷Li MAS NMR of Li_xV₂O₅

paramagnetic NMR shift (diamagnetic around 0 ppm, asterisk)

α to ε: gradual structure change, in accordance with *in situ* XRD [3]

 δ : pure phase around the voltage drop

γ: two signals (chemical exchange via EXSY) albeit one crystallographic site

 ω : broad signal indicating severe disorder/amourphous structure

⁵¹V MAS NMR of Li_vV₂O₅

no drastical change in spinning sideband pattern

-> no severe structural distortion

large paramagnetic relaxation (PRE)

-> no signal obtained below 3.0 V

 α : resembles pristine V_2O_5 but disorder

 ϵ and δ : paramagntic chemical shift change of around 100 ppm

References

- [1] D. O. Scanlon, A. Walsh, B. J. Morgan, G. W. Watson, J. Phys. Chem. C 2008, 112, 9903–9911.
- [2] P. Pietrzyk, Z. Sojka, Appl. Magn. Reson. 2011, 40, 471–479.

- [3] C. K. Christensen, D. R. Sørensen, J. Hvam, D. B. Ravnsbæk, Chem. Mater. 2019, 31, 512–520.
- [4] D. Gourier, A. Tranchant, N. Baffier, R. Messina, Electrochim. Acta 1992, 37, 2755–2764.