000893315 001__ 893315
000893315 005__ 20230111074310.0
000893315 0247_ $$2doi$$a10.3390/ijms21176297
000893315 0247_ $$2ISSN$$a1422-0067
000893315 0247_ $$2ISSN$$a1661-6596
000893315 0247_ $$2Handle$$a2128/28001
000893315 0247_ $$2altmetric$$aaltmetric:89485000
000893315 0247_ $$2pmid$$a32878077
000893315 0247_ $$2WOS$$aWOS:000569576000001
000893315 037__ $$aFZJ-2021-02689
000893315 082__ $$a540
000893315 1001_ $$0P:(DE-HGF)0$$aCui, Di$$b0$$eCorresponding author
000893315 245__ $$aDnmt3a2/Dnmt3L Overexpression in the Dopaminergic System of Mice Increases Exercise Behavior through Signaling Changes in the Hypothalamus
000893315 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2020
000893315 3367_ $$2DRIVER$$aarticle
000893315 3367_ $$2DataCite$$aOutput Types/Journal article
000893315 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625214340_30730
000893315 3367_ $$2BibTeX$$aARTICLE
000893315 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893315 3367_ $$00$$2EndNote$$aJournal Article
000893315 520__ $$aDnmt3a2, a de novo DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3LDat/wt, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression. The mice were studied with behavioral paradigms (e.g., cylinder test, open field, and treadmill), brain slice patch clamp recordings, ex vivo metabolite analysis, and in vivo positron emission tomography (PET) using the dopaminergic tracer 6-[18F]FMT. The results showed that spontaneous activity and exercise performance were enhanced in Dnmt3a2/3LDat/wt mice compared to Dnmt3a2/3Lwt/wt controls. Dopaminergic substantia nigra pars compacta neurons of Dnmt3a2/3LDat/wt animals displayed a higher fire frequency and excitability. However, dopamine concentration was not increased in the striatum, and dopamine metabolite concentration was even significantly decreased. Striatal 6-[18F]FMT uptake, reflecting aromatic L-amino acid decarboxylase activity, was the same in Dnmt3a2/3LDat/wt mice and controls. [18F]FDG PET showed that hypothalamic metabolic activity was tightly linked to motor behavior in Dnmt3a2/3LDat/wt mice. Furthermore, dopamine biosynthesis and motor-related metabolic activity were correlated in the hypothalamus. Our findings suggest that Dnmt3a2/3L, when overexpressed in dopaminergic neurons, modulates motor performance via activation of the nigrostriatal pathway. This does not involve increased dopamine synthesis.
000893315 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000893315 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893315 7001_ $$0P:(DE-HGF)0$$aMesaros, Andrea$$b1
000893315 7001_ $$0P:(DE-HGF)0$$aBurdeos, Gregor$$b2
000893315 7001_ $$0P:(DE-HGF)0$$aVoigt, Ingo$$b3
000893315 7001_ $$0P:(DE-HGF)0$$aGiavalisco, Patrick$$b4
000893315 7001_ $$0P:(DE-HGF)0$$aHinze, Yvonne$$b5
000893315 7001_ $$0P:(DE-HGF)0$$aPurrio, Martin$$b6
000893315 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7
000893315 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b8$$ufzj
000893315 7001_ $$0P:(DE-HGF)0$$aObata, Yayoi$$b9
000893315 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b10
000893315 7001_ $$0P:(DE-HGF)0$$aXu, Xiangru$$b11$$eCorresponding author
000893315 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms21176297$$gVol. 21, no. 17, p. 6297 -$$n17$$p6297 -$$tInternational journal of molecular sciences$$v21$$x1422-0067$$y2020
000893315 8564_ $$uhttps://juser.fz-juelich.de/record/893315/files/ijms-21-06297.pdf$$yOpenAccess
000893315 909CO $$ooai:juser.fz-juelich.de:893315$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000893315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b8$$kFZJ
000893315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b10$$kFZJ
000893315 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000893315 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893315 9141_ $$y2021
000893315 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893315 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893315 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2019$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893315 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000893315 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893315 920__ $$lyes
000893315 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000893315 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000893315 980__ $$ajournal
000893315 980__ $$aVDB
000893315 980__ $$aUNRESTRICTED
000893315 980__ $$aI:(DE-Juel1)INM-5-20090406
000893315 980__ $$aI:(DE-Juel1)INM-2-20090406
000893315 9801_ $$aFullTexts