001     893317
005     20230111074310.0
037 _ _ |a FZJ-2021-02691
100 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 0
|e Corresponding author
|u fzj
111 2 _ |a SPIE Optics & Phtotonics Conference, Spintronics XIII
|c online
|d 2020-08-25 - 2020-08-28
|w USA
245 _ _ |a Deriving spin-models from DFT: Challanges and Limitations
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1625843031_1328
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a We examine the mapping of density functional theory (DFT) calculations to spin models for the determination of magnetic properties on larger length scales, e.g. for chiral domain walls, skyrmions, or spin-spiral ground states. While careful tests, using different DFT methods and magnetic sampling configurations allow getting converged results for the exchange parameters [1], it is not so clear that they give a reliable account of the material properties. This can be due to a methodologically enforced truncation of the expansion (e.g. finite sampling in real / reciprocal space) or a neglect of terms in the spin model Hamiltonian. E.g. for the B20 compound FeGe some properties like the period of the spin-spiral in the ground state are at variance with experimental findings, while others like the Curie temperature agree reasonably [2]. We argue that in many cases the underlying spin model is too simplified to capture the full complexity embedded in the electronic structure and the recent discovery of new magnetic interactions in these compounds supports this view [3]. [1] B. Zimmermann et al., Phys. Rev. B 99, 214426 (2019)[2] S. Grytsiuk et al., Phys. Rev. B 100, 214406 (2019)[3] S. Grytsiuk et al., Nature Commun. 11, 511 (2020)
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
700 1 _ |a Zimmermann, Bernd
|0 P:(DE-Juel1)131065
|b 1
700 1 _ |a Grytsiuk, Sergii
|0 P:(DE-Juel1)169958
|b 2
|u fzj
700 1 _ |a Hoffmann, Markus
|0 P:(DE-Juel1)162311
|b 3
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:893317
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169958
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162311
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21