000893318 001__ 893318
000893318 005__ 20210710135157.0
000893318 037__ $$aFZJ-2021-02692
000893318 1001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b0$$eCorresponding author$$ufzj
000893318 1112_ $$aDPG Spring Meeting of the Surface Science Division$$conline$$d2021-03-01 - 2021-03-04$$wGermany
000893318 245__ $$aRashba effect and chiral magnetism: some insights from density functional theory
000893318 260__ $$c2021
000893318 3367_ $$033$$2EndNote$$aConference Paper
000893318 3367_ $$2DataCite$$aOther
000893318 3367_ $$2BibTeX$$aINPROCEEDINGS
000893318 3367_ $$2DRIVER$$aconferenceObject
000893318 3367_ $$2ORCID$$aLECTURE_SPEECH
000893318 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1625902211_24397$$xInvited
000893318 520__ $$aBoth, the Rashba effect and the Dzyaloshinskii-Moriya interaction (DMI) rely on inversion symmetry breaking and spin-orbit coupling (SOC) effects. While the qualitative behavior of both is easily described on a model level, quantitative insights in strength and sign are not so easy to obtain. Density functional theory (DFT) offers an effective tool to study these effects on an ab initio level. E.g. it was found that oxygen coverage changes both, the sign of the Rashba constant on a metal surface [1], and that of the DMI in a magnetic thin film [2]. We shortly discuss the interplay of magnetism and the Rashba effect and questions about the size and sign of the Rashba constant. These findings will be connected to recent models on so-called Rashba- and SOC-mediated DMI. DFT calculations of simple trilayer systems based on a Co/Pt interface show that the DMI can not only vary by a factor of 2−3, but also change sign depending on the inclusion of a third element [3]. We acknowledge discussions and collaborations with H. Jia, B. Zimmermann, and M. Hoffmann and funding by the Deutsche Forschungsgemeinschaft (DFG) through SPP 2137 “Skyrmionics”.[1] O. Krupin et al., New J. Phys. 11, 013035 (2009)[2] A. Belabbes et al., Sci. Rep. 6, 24634 (2016)[3] H. Jia et al., Phys. Rev. Mater. 4, 024405 (2020)
000893318 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000893318 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2021/conference/surfacescience/part/o/session/60/contribution/1?lang=en
000893318 909CO $$ooai:juser.fz-juelich.de:893318$$pVDB
000893318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b0$$kFZJ
000893318 9130_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000893318 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000893318 9141_ $$y2021
000893318 920__ $$lyes
000893318 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000893318 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000893318 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000893318 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000893318 980__ $$aconf
000893318 980__ $$aVDB
000893318 980__ $$aI:(DE-Juel1)PGI-1-20110106
000893318 980__ $$aI:(DE-Juel1)IAS-1-20090406
000893318 980__ $$aI:(DE-82)080009_20140620
000893318 980__ $$aI:(DE-82)080012_20140620
000893318 980__ $$aUNRESTRICTED