001     893318
005     20210710135157.0
037 _ _ |a FZJ-2021-02692
100 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 0
|e Corresponding author
|u fzj
111 2 _ |a DPG Spring Meeting of the Surface Science Division
|c online
|d 2021-03-01 - 2021-03-04
|w Germany
245 _ _ |a Rashba effect and chiral magnetism: some insights from density functional theory
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1625902211_24397
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Both, the Rashba effect and the Dzyaloshinskii-Moriya interaction (DMI) rely on inversion symmetry breaking and spin-orbit coupling (SOC) effects. While the qualitative behavior of both is easily described on a model level, quantitative insights in strength and sign are not so easy to obtain. Density functional theory (DFT) offers an effective tool to study these effects on an ab initio level. E.g. it was found that oxygen coverage changes both, the sign of the Rashba constant on a metal surface [1], and that of the DMI in a magnetic thin film [2]. We shortly discuss the interplay of magnetism and the Rashba effect and questions about the size and sign of the Rashba constant. These findings will be connected to recent models on so-called Rashba- and SOC-mediated DMI. DFT calculations of simple trilayer systems based on a Co/Pt interface show that the DMI can not only vary by a factor of 2−3, but also change sign depending on the inclusion of a third element [3]. We acknowledge discussions and collaborations with H. Jia, B. Zimmermann, and M. Hoffmann and funding by the Deutsche Forschungsgemeinschaft (DFG) through SPP 2137 “Skyrmionics”.[1] O. Krupin et al., New J. Phys. 11, 013035 (2009)[2] A. Belabbes et al., Sci. Rep. 6, 24634 (2016)[3] H. Jia et al., Phys. Rev. Mater. 4, 024405 (2020)
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
856 4 _ |u https://www.dpg-verhandlungen.de/year/2021/conference/surfacescience/part/o/session/60/contribution/1?lang=en
909 C O |o oai:juser.fz-juelich.de:893318
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130545
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21