000893366 001__ 893366
000893366 005__ 20240712100831.0
000893366 0247_ $$2doi$$a10.5194/acp-21-9515-2021
000893366 0247_ $$2ISSN$$a1680-7316
000893366 0247_ $$2ISSN$$a1680-7324
000893366 0247_ $$2Handle$$a2128/28005
000893366 0247_ $$2altmetric$$aaltmetric:108111506
000893366 0247_ $$2WOS$$aWOS:000667944900001
000893366 037__ $$aFZJ-2021-02707
000893366 041__ $$aEnglish
000893366 082__ $$a550
000893366 1001_ $$00000-0002-1004-4002$$aWeimer, Michael$$b0$$eCorresponding author
000893366 245__ $$aMountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
000893366 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000893366 3367_ $$2DRIVER$$aarticle
000893366 3367_ $$2DataCite$$aOutput Types/Journal article
000893366 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625215301_4883
000893366 3367_ $$2BibTeX$$aARTICLE
000893366 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893366 3367_ $$00$$2EndNote$$aJournal Article
000893366 520__ $$aPolar stratospheric clouds (PSCs) are a driver for ozone depletion in the lower polar stratosphere. They provide surface for heterogeneous reactions activating chlorine and bromine reservoir species during the polar night. The large-scale effects of PSCs are represented by means of parameterisations in current global chemistry–climate models, but one process is still a challenge: the representation of PSCs formed locally in conjunction with unresolved mountain waves. In this study, we investigate direct simulations of PSCs formed by mountain waves with the ICOsahedral Nonhydrostatic modelling framework (ICON) with its extension for Aerosols and Reactive Trace gases (ART) including local grid refinements (nesting) with two-way interaction. Here, the nesting is set up around the Antarctic Peninsula, which is a well-known hot spot for the generation of mountain waves in the Southern Hemisphere. We compare our model results with satellite measurements of PSCs from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and gravity wave observations of the Atmospheric Infrared Sounder (AIRS). For a mountain wave event from 19 to 29 July 2008 we find similar structures of PSCs as well as a fairly realistic development of the mountain wave between the satellite data and the ICON-ART simulations in the Antarctic Peninsula nest. We compare a global simulation without nesting with the nested configuration to show the benefits of adding the nesting. Although the mountain waves cannot be resolved explicitly at the global resolution used (about 160 km), their effect from the nested regions (about 80 and 40 km) on the global domain is represented. Thus, we show in this study that the ICON-ART model has the potential to bridge the gap between directly resolved mountain-wave-induced PSCs and their representation and effect on chemistry at coarse global resolutions.
000893366 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000893366 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
000893366 536__ $$0G:(GEPRIS)310479827$$aDFG project 310479827 - Stratosphärische Wasserdampf Simulationen: Von den Polarregionen zur Tropischen Tropopause $$c310479827$$x2
000893366 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893366 7001_ $$00000-0002-0530-1297$$aBuchmüller, Jennifer$$b1
000893366 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000893366 7001_ $$0P:(DE-HGF)0$$aKirner, Ole$$b3
000893366 7001_ $$0P:(DE-HGF)0$$aLuo, Beiping$$b4
000893366 7001_ $$0P:(DE-HGF)0$$aRuhnke, Roland$$b5
000893366 7001_ $$0P:(DE-HGF)0$$aSteiner, Michael$$b6
000893366 7001_ $$0P:(DE-Juel1)159462$$aTritscher, Ines$$b7
000893366 7001_ $$0P:(DE-HGF)0$$aBraesicke, Peter$$b8
000893366 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-9515-2021$$gVol. 21, no. 12, p. 9515 - 9543$$n12$$p9515 - 9543$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000893366 8564_ $$uhttps://acp.copernicus.org/articles/21/9515/2021/
000893366 8564_ $$uhttps://juser.fz-juelich.de/record/893366/files/acp-21-9515-2021.pdf$$yOpenAccess
000893366 909CO $$ooai:juser.fz-juelich.de:893366$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893366 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000893366 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich$$b7$$kFZJ
000893366 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000893366 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
000893366 9141_ $$y2021
000893366 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893366 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000893366 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893366 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893366 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893366 920__ $$lyes
000893366 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000893366 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000893366 9801_ $$aFullTexts
000893366 980__ $$ajournal
000893366 980__ $$aVDB
000893366 980__ $$aUNRESTRICTED
000893366 980__ $$aI:(DE-Juel1)JSC-20090406
000893366 980__ $$aI:(DE-Juel1)IEK-7-20101013
000893366 981__ $$aI:(DE-Juel1)ICE-4-20101013