000893376 001__ 893376
000893376 005__ 20210720135228.0
000893376 0247_ $$2doi$$a10.25493/81EV-ZVT
000893376 037__ $$aFZJ-2021-02717
000893376 041__ $$aEnglish
000893376 1001_ $$0P:(DE-Juel1)179582$$aDomhof, Justin$$b0$$ufzj
000893376 245__ $$aParcellation-based structural and resting-state functional brain connectomes of a healthy cohort
000893376 260__ $$bEBRAINS$$c2021
000893376 3367_ $$2BibTeX$$aMISC
000893376 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1626778675_6696
000893376 3367_ $$026$$2EndNote$$aChart or Table
000893376 3367_ $$2DataCite$$aDataset
000893376 3367_ $$2ORCID$$aDATA_SET
000893376 3367_ $$2DINI$$aResearchData
000893376 520__ $$aNowadays, connectivity patterns of brain networks are of special interest, as they may reflect communication in the brain at the structural and functional levels. Their extraction, however, is a complex process that requires deep knowledge of magnetic resonance imaging (MRI) data processing methods. Furthermore, there is no consensus as to which parcellation of the brain is most suitable for a given analysis. Therefore, 19 different state-of-the-art cortical parcellations were used in this dataset to reconstruct the region-based empirical structural connectivity (representing the anatomy of axonal tracts) and functional connectivity (representing the temporal correlation between neuronal activity of brain regions) from diffusion-weighted (dwMRI) and resting-state functional magnetic resonance imaging (fMRI) data, respectively. The repository provides individual connectomes for 200 subjects from the Human Connectome Project. The data can be used by members of the neuroimaging community to investigate structural and functional human connectomes, and to extend the investigation to whole-brain models for further analyses of brain structure and function.
000893376 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000893376 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000893376 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000893376 588__ $$aDataset connected to DataCite
000893376 650_7 $$2Other$$aNeuroscience
000893376 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000893376 7001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b1$$ufzj
000893376 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b2$$ufzj
000893376 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b3$$eCorresponding author$$ufzj
000893376 773__ $$a10.25493/81EV-ZVT
000893376 909CO $$ooai:juser.fz-juelich.de:893376$$popenaire$$pVDB$$pec_fundedresources
000893376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179582$$aForschungszentrum Jülich$$b0$$kFZJ
000893376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b1$$kFZJ
000893376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
000893376 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b3$$kFZJ
000893376 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000893376 9141_ $$y2021
000893376 920__ $$lyes
000893376 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000893376 980__ $$adataset
000893376 980__ $$aVDB
000893376 980__ $$aI:(DE-Juel1)INM-7-20090406
000893376 980__ $$aUNRESTRICTED