000893384 001__ 893384
000893384 005__ 20240725202006.0
000893384 0247_ $$2doi$$a10.1021/acs.inorgchem.0c03334
000893384 0247_ $$2ISSN$$a0020-1669
000893384 0247_ $$2ISSN$$a1520-510X
000893384 0247_ $$2Handle$$a2128/28093
000893384 0247_ $$2pmid$$a33534576
000893384 0247_ $$2WOS$$aWOS:000620345400035
000893384 037__ $$aFZJ-2021-02725
000893384 082__ $$a540
000893384 1001_ $$0P:(DE-HGF)0$$aKirst, Christin$$b0
000893384 245__ $$aInvestigation of Structural Changes of Cu(I) and Ag(I) Complexes Utilizing a Flexible, Yet Sterically Demanding Multidentate Phosphine Oxide Ligand
000893384 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2021
000893384 3367_ $$2DRIVER$$aarticle
000893384 3367_ $$2DataCite$$aOutput Types/Journal article
000893384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884532_5581
000893384 3367_ $$2BibTeX$$aARTICLE
000893384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893384 3367_ $$00$$2EndNote$$aJournal Article
000893384 520__ $$aThe syntheses of a sterically demanding, multidentate bis(quinaldinyl)phenylphosphine oxide ligand and some Cu(I) and Ag(I) complexes thereof are described. By introducing a methylene group between the quinoline unit and phosphorus, the phosphine oxide ligand gains additional flexibility. This specific ligand design induces not only a versatile coordination chemistry but also a rarely observed and investigated behavior in solution. The flexibility of the birdlike ligand offers the unexpected opportunity of open-wing and closed-wing coordination to the metal. In fact, the determined crystal structures of these complexes show both orientations. Investigations of the ligand in solution show a strong dependency of the chemical shift of the CH2 protons on the solvent used. Variable-temperature, multinuclear NMR spectroscopy was carried out, and an interesting dynamic behavior of the complexes is observed. Due to the introduced flexibility, the quinaldinyl substituents change their arrangements from open-wing to closed-wing upon cooling, while still staying coordinated to the metal. This change in conformation is completely reversible when warming up the sample. Based on 2D NMR spectra measured at −80 °C, an assignment of the signals corresponding to the different arrangements was possible. Additionally, the copper(I) complex shows reversible redox activity in solution. The combination of structural flexibility of a multidentate ligand and the positive redox properties of the resulting complexes comprises key factors for a possible application of such compounds in transition-metal catalysis. Via a reorganization of the ligand, occurring transition states could be stabilized, and selectivity might be enhanced.
000893384 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000893384 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893384 7001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b1$$eCorresponding author$$ufzj
000893384 7001_ $$00000-0001-7321-880X$$aBräuniger, Thomas$$b2
000893384 7001_ $$0P:(DE-HGF)0$$aMayer, Peter$$b3
000893384 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b4$$ufzj
000893384 7001_ $$00000-0002-8855-730X$$aKaraghiosoff, Konstantin$$b5
000893384 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.0c03334$$gVol. 60, no. 4, p. 2437 - 2445$$n4$$p2437 - 2445$$tInorganic chemistry$$v60$$x1520-510X$$y2021
000893384 8564_ $$uhttps://juser.fz-juelich.de/record/893384/files/JACS%20CuAg%20Template_final.pdf$$yPublished on 2021-02-03. Available in OpenAccess from 2022-02-03.
000893384 8564_ $$uhttps://juser.fz-juelich.de/record/893384/files/acs.inorgchem.0c03334-1.pdf$$yRestricted
000893384 8564_ $$uhttps://juser.fz-juelich.de/record/893384/files/ic0c03334_si_001.pdf$$yPublished on 2021-02-03. Available in OpenAccess from 2022-02-03.
000893384 909CO $$ooai:juser.fz-juelich.de:893384$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000893384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b1$$kFZJ
000893384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b4$$kFZJ
000893384 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000893384 9141_ $$y2021
000893384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893384 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2019$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000893384 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000893384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000893384 920__ $$lyes
000893384 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893384 980__ $$ajournal
000893384 980__ $$aVDB
000893384 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893384 980__ $$aUNRESTRICTED
000893384 9801_ $$aFullTexts
000893384 981__ $$aI:(DE-Juel1)IMD-2-20101013