000893416 001__ 893416
000893416 005__ 20240711092234.0
000893416 0247_ $$2doi$$a10.1016/j.fuproc.2021.106918
000893416 0247_ $$2ISSN$$a0378-3820
000893416 0247_ $$2ISSN$$a1873-7188
000893416 0247_ $$2Handle$$a2128/28010
000893416 0247_ $$2WOS$$aWOS:000681270500006
000893416 037__ $$aFZJ-2021-02740
000893416 082__ $$a660
000893416 1001_ $$0P:(DE-HGF)0$$aPandey, Daya Shankar$$b0
000893416 245__ $$aTransformation of inorganic matter in poultry litter during fluidised bed gasification
000893416 260__ $$aNew York, NY [u.a.]$$bScience Direct$$c2021
000893416 3367_ $$2DRIVER$$aarticle
000893416 3367_ $$2DataCite$$aOutput Types/Journal article
000893416 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653467388_22562
000893416 3367_ $$2BibTeX$$aARTICLE
000893416 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893416 3367_ $$00$$2EndNote$$aJournal Article
000893416 520__ $$aThis work investigates the transformation, release and fate of inorganic matter during fluidised bed gasification of poultry litter and also poultry litter mixed with limestone as an additive. The poultry litter, the cyclone and bed ash were characterised by means of chemical fractionation analysis, as well as X-ray diffraction. Concurrently, the release of inorganic species during gasification of the feedstock was measured in separate laboratory experiments using molecular beam mass spectrometry. In addition, FactSage was used to predict the formation of gaseous species and the composition of solid residues from gasification under equilibrium conditions. On average, the cyclone ash accounts for 4.6 wt% and the bed ash 12.4 wt% of the total poultry litter fed into the reactor. All phosphorous (P) was present in the cyclone ash as stable phosphates, while potassium (K) in both cyclone and bed ash was mainly present as H2O leachable KCl, organically associated and stable phosphates and silicates. Furthermore, an assessment was made against the appropriate criteria, whether the ashes from gasification can be categorised as component materials for EU fertiliser products.
000893416 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000893416 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893416 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b1$$eCorresponding author$$ufzj
000893416 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b2$$ufzj
000893416 7001_ $$0P:(DE-Juel1)129815$$aZiegner, Mirko$$b3$$ufzj
000893416 7001_ $$0P:(DE-HGF)0$$aTrubetskaya, Anna$$b4
000893416 7001_ $$0P:(DE-HGF)0$$aLeahy, James J.$$b5
000893416 7001_ $$0P:(DE-HGF)0$$aKwapinska, Marzena$$b6
000893416 773__ $$0PERI:(DE-600)1483666-X$$a10.1016/j.fuproc.2021.106918$$gVol. 221, p. 106918 -$$p106918 -$$tFuel processing technology$$v221$$x0378-3820$$y2021
000893416 8564_ $$uhttps://juser.fz-juelich.de/record/893416/files/Transformation%20of%20inorganic%20-%20Pandev.pdf$$yOpenAccess
000893416 909CO $$ooai:juser.fz-juelich.de:893416$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b1$$kFZJ
000893416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b2$$kFZJ
000893416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129815$$aForschungszentrum Jülich$$b3$$kFZJ
000893416 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000893416 9141_ $$y2021
000893416 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000893416 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893416 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL PROCESS TECHNOL : 2019$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893416 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000893416 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000893416 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000893416 9801_ $$aFullTexts
000893416 980__ $$ajournal
000893416 980__ $$aVDB
000893416 980__ $$aI:(DE-Juel1)IEK-2-20101013
000893416 980__ $$aUNRESTRICTED
000893416 981__ $$aI:(DE-Juel1)IMD-1-20101013