000893417 001__ 893417
000893417 005__ 20220930130320.0
000893417 0247_ $$2doi$$a10.22331/q-2021-06-29-487
000893417 0247_ $$2Handle$$a2128/28042
000893417 0247_ $$2altmetric$$aaltmetric:108534436
000893417 0247_ $$2WOS$$aWOS:000669889400001
000893417 037__ $$aFZJ-2021-02741
000893417 082__ $$a530
000893417 1001_ $$00000-0002-6201-2723$$aParrado-Rodríguez, Pedro$$b0
000893417 245__ $$aCrosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions
000893417 260__ $$aWien$$bVerein zur Förderung des Open Access Publizierens in den Quantenwissenschaften$$c2021
000893417 3367_ $$2DRIVER$$aarticle
000893417 3367_ $$2DataCite$$aOutput Types/Journal article
000893417 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625821484_1328
000893417 3367_ $$2BibTeX$$aARTICLE
000893417 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893417 3367_ $$00$$2EndNote$$aJournal Article
000893417 520__ $$aPhysical qubits in experimental quantum information processors are inevitably exposed to different sources of noise and imperfections, which lead to errors that typically accumulate hindering our ability to perform long computations reliably. Progress towards scalable and robust quantum computation relies on exploiting quantum error correction (QEC) to actively battle these undesired effects. In this work, we present a comprehensive study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams. This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits. We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level. Finally, we study the impact of residual crosstalk errors on the performance of fault-tolerant QEC numerically, identifying the experimental target values that need to be achieved in near-term trapped-ion experiments to reach the break-even point for beneficial QEC with low-distance topological codes.
000893417 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000893417 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893417 7001_ $$0P:(DE-HGF)0$$aRyan-Anderson, Ciarán$$b1
000893417 7001_ $$0P:(DE-HGF)0$$aBermudez, Alejandro$$b2
000893417 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$eCorresponding author
000893417 773__ $$0PERI:(DE-600)2931392-2$$a10.22331/q-2021-06-29-487$$gVol. 5, p. 487 -$$p487 -$$tQuantum$$v5$$x2521-327X$$y2021
000893417 8564_ $$uhttps://juser.fz-juelich.de/record/893417/files/Invoice_81-21.pdf
000893417 8564_ $$uhttps://juser.fz-juelich.de/record/893417/files/q-2021-06-29-487.pdf$$yOpenAccess
000893417 8767_ $$881/2021$$92021-06-29$$d2021-07-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200168488
000893417 909CO $$ooai:juser.fz-juelich.de:893417$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000893417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
000893417 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000893417 9141_ $$y2021
000893417 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM-AUSTRIA : 2019$$d2021-02-02
000893417 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000893417 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893417 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893417 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893417 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000893417 980__ $$ajournal
000893417 980__ $$aVDB
000893417 980__ $$aUNRESTRICTED
000893417 980__ $$aI:(DE-Juel1)PGI-2-20110106
000893417 980__ $$aAPC
000893417 9801_ $$aAPC
000893417 9801_ $$aFullTexts