000893418 001__ 893418
000893418 005__ 20210930133536.0
000893418 0247_ $$2doi$$a10.3390/rs13132545
000893418 0247_ $$2Handle$$a2128/28634
000893418 0247_ $$2altmetric$$aaltmetric:108393935
000893418 0247_ $$2WOS$$aWOS:000671000900001
000893418 037__ $$aFZJ-2021-02742
000893418 041__ $$aEnglish
000893418 082__ $$a620
000893418 1001_ $$0P:(DE-HGF)0$$aBandopadhyay, Subhajit$$b0$$eCorresponding author
000893418 245__ $$aCan Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging Spectroscopy Data
000893418 260__ $$aBasel$$bMDPI$$c2021
000893418 3367_ $$2DRIVER$$aarticle
000893418 3367_ $$2DataCite$$aOutput Types/Journal article
000893418 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631609022_991
000893418 3367_ $$2BibTeX$$aARTICLE
000893418 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893418 3367_ $$00$$2EndNote$$aJournal Article
000893418 520__ $$aIn this study, we are testing a proxy for red and far-red Sun-induced fluorescence (SIF) using an integrated fuzzy logic modelling approach, termed as SIFfuzzy and SIFfuzzy-APAR. The SIF emitted from the core of the photosynthesis and observed at the top-of-canopy is regulated by three major controlling factors: (1) light interception and absorption by canopy plant cover; (2) escape fraction of SIF photons (fesc); (3) light use efficiency and non-photochemical quenching (NPQ) processes. In our study, we proposed and validated a fuzzy logic modelling approach that uses different combinations of spectral vegetation indices (SVIs) reflecting such controlling factors to approximate the potential SIF signals at 760 nm and 687 nm. The HyPlant derived and field validated SVIs (i.e., SR, NDVI, EVI, NDVIre, PRI) have been processed through the membership transformation in the first stage, and in the next stage the membership transformed maps have been processed through the Fuzzy Gamma simulation to calculate the SIFfuzzy. To test whether the inclusion of absorbed photosynthetic active radiation (APAR) increases the accuracy of the model, the SIFfuzzy was multiplied by APAR (SIFfuzzy-APAR). The agreement between the modelled SIFfuzzy and actual SIF airborne retrievals expressed by R2 ranged from 0.38 to 0.69 for SIF760 and from 0.85 to 0.92 for SIF687. The inclusion of APAR improved the R2 value between SIFfuzzy-APAR and actual SIF. This study showed, for the first time, that a diverse set of SVIs considered as proxies of different vegetation traits, such as biochemical, structural, and functional, can be successfully combined to work as a first-order proxy of SIF. The previous studies mainly included the far-red SIF whereas, in this study, we have also focused on red SIF along with far-red SIF. The analysis carried out at 1 m spatial resolution permits to better infer SIF behaviour at an ecosystem-relevant scale
000893418 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000893418 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893418 7001_ $$0P:(DE-HGF)0$$aRastogi, Anshu$$b1
000893418 7001_ $$00000-0002-7192-2032$$aCogliati, Sergio$$b2
000893418 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b3
000893418 7001_ $$0P:(DE-HGF)0$$aGąbka, Maciej$$b4
000893418 7001_ $$00000-0002-5212-7383$$aJuszczak, Radosław$$b5
000893418 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs13132545$$gVol. 13, no. 13, p. 2545 -$$n13$$p2545 -$$tRemote sensing$$v13$$x2072-4292$$y2021
000893418 8564_ $$uhttps://juser.fz-juelich.de/record/893418/files/remotesensing-13-02545-v2.pdf$$yOpenAccess
000893418 909CO $$ooai:juser.fz-juelich.de:893418$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893418 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b3$$kFZJ
000893418 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000893418 9141_ $$y2021
000893418 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893418 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893418 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2019$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893418 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893418 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893418 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000893418 980__ $$ajournal
000893418 980__ $$aVDB
000893418 980__ $$aUNRESTRICTED
000893418 980__ $$aI:(DE-Juel1)IBG-2-20101118
000893418 9801_ $$aFullTexts