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Abstract: In this study, we are testing a proxy for red and far-red Sun-induced fluorescence (SIF) using
an integrated fuzzy logic modelling approach, termed as SIFfuzzy and SIFfuzzy-APAR. The SIF emitted
from the core of the photosynthesis and observed at the top-of-canopy is regulated by three major
controlling factors: (1) light interception and absorption by canopy plant cover; (2) escape fraction of
SIF photons (fesc); (3) light use efficiency and non-photochemical quenching (NPQ) processes. In our
study, we proposed and validated a fuzzy logic modelling approach that uses different combinations
of spectral vegetation indices (SVIs) reflecting such controlling factors to approximate the potential
SIF signals at 760 nm and 687 nm. The HyPlant derived and field validated SVIs (i.e., SR, NDVI,
EVI, NDVIre, PRI) have been processed through the membership transformation in the first stage,
and in the next stage the membership transformed maps have been processed through the Fuzzy
Gamma simulation to calculate the SIFfuzzy. To test whether the inclusion of absorbed photosynthetic
active radiation (APAR) increases the accuracy of the model, the SIFfuzzy was multiplied by APAR
(SIFfuzzy-APAR). The agreement between the modelled SIFfuzzy and actual SIF airborne retrievals
expressed by R2 ranged from 0.38 to 0.69 for SIF760 and from 0.85 to 0.92 for SIF687. The inclusion of
APAR improved the R2 value between SIFfuzzy-APAR and actual SIF. This study showed, for the first
time, that a diverse set of SVIs considered as proxies of different vegetation traits, such as biochemical,
structural, and functional, can be successfully combined to work as a first-order proxy of SIF. The
previous studies mainly included the far-red SIF whereas, in this study, we have also focused on red
SIF along with far-red SIF. The analysis carried out at 1 m spatial resolution permits to better infer
SIF behaviour at an ecosystem-relevant scale.

Keywords: sun-induced fluorescence; SIFfuzzy; SIFfuzzy-APAR; spectral vegetation indices; HyPlant;
fuzzy logic modelling

1. Introduction

Sun-induced fluorescence (SIF) has emerged as a promising remote sensing (RS) signal
in the contemporary era to understand and monitor the terrestrial vegetation activity
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as well as their structural and functional diversity [1–4]. The potential of SIF has been
well recognized by scientists and research communities because of its direct link to plant
photosynthetic activity and plant conditions [5]. Due to a strong relation of chlorophyll
fluorescence with photosynthesis, the SIF as a product of chlorophyll fluorescence was
observed to indicate the gross primary productivity (GPP) under the clear sky as reported
by several studies [6–10]. However, the SIF signal is very weak in comparison to reflected
solar energy as only a small fraction of the absorbed energy is re-emitted in the form
of SIF [11,12]. The SIF signal is influenced by three main factors which may impact the
accuracy of SIF estimation at the canopy level: (1) light interception or light absorption by
canopy plant cover, expressed by absorbed photosynthetic active radiation (APAR). APAR
can be influenced by several vegetation traits, such as fractional cover, leaf chlorophyll
content, leaf angle distribution, leaf clumping, etc. [13], indicating the dependence of SIF
on vegetation traits; (2) SIF reabsorption and scattering—most of the photons emitted by
plants are reabsorbed or scattered within the canopy [12,14,15], therefore, the fluorescence
signal is dependent on the escape fraction of SIF (fesc) which may vary for different
vegetation; (3) the light use efficiency (LUE)—absorbed light used for photosynthesis has
a strong impact on the functional/physiological regulation of the leaf which is highly
dynamic [16]. The relation between the efficiency of leaf photosynthesis and the intensity
of SIF is non-linear as it is controlled by three different paths of energy use/dissipation,
i.e., photosynthetic electron flow, non-photochemical quenching (NPQ) and fluorescence
emission [17].

The traditional RS of vegetation solely relies on the canopy reflectance at different
spectral channels and has been widely applied and implemented for several ecosystem
applications such as croplands [18–20], grasslands [21], peatlands [22,23], etc. Over the past
few decades, vegetation monitoring based on spectral vegetation indices (SVIs) have been
used to interpret the canopy greenness [24,25], biomass [26,27], water content [28–30], leaf
area [31,32], zeaxanthin content [33,34], etc. and have greatly enhanced our understanding
of the terrestrial vegetation [35]. However, most of the remotely sensed SVIs alone are not
sensitive enough to capture the short-term dynamic (i.e., hourly) changes in the photosyn-
thetic process caused by different environmental conditions (i.e., incident irradiance) or
stress factors impacting plant physiology [36].

Bandopadhyay et al. [1] have shown that single spectral vegetation indices (SVIs)
individually, although related to SIFs, cannot be used to approximate SIF signals with good
accuracy. On the other hand, some of the above factors influencing SIF can be reflected by
different SVIs, therefore we hypothesized that SIF can be approximated by the combination
of different SVIs. The SVIs like Normalized Difference Vegetation Index (NDVI) and
Simple Ratio (SR), which successively improved our understanding of vegetation greenness
content and plant phenology, can approximate the SIF signals up to a certain limit evident
by the positive agreements in several studies [1,37]. These two indices developed from
the canopy reflectance spectra obtained for the region of red and NIR are significantly
influenced by the canopy structure, light use absorption and light interception, canopy
chemical contents, and photosynthetic activity [38]. Such properties of NDVI and SR
connect them with the factors related to light absorption and to some extent with fesc
of SIF emission, which can only be able to approximate the SIF signal up to a certain
limit. Similarly, Enhanced Vegetation Index (EVI) is an optimized spectral index sensitive
to light absorption. Although EVI and NDVI both are highly sensitive to the canopy
biomass content, NDVI saturates under high biomass and is unable to replicate the actual
biomass content of the vegetation [39]. Therefore, EVI can more closely be related to
fesc in comparison to NDVI and SR and may help in the estimation of SIF. The red-edge-
based normalized difference vegetation index (NDVIre) indicates the transition boundary
between the red and NIR region disentangles the absorption by chlorophyll in the red
visible region and scattering due to leaf internal structure in the NIR region [21,40]. It
denotes that NDVIre is influenced by the leaf absorption content and canopy structure that
have a direct connection with the SIF emission and fesc. The narrowband Photochemical
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Reflectance Index (PRI) indicates the NPQ process and plant xanthophyll cycles which are
highly dynamic with environmental factors [41,42]. This NPQ process is parallelly working
with photochemical quenching and chlorophyll fluorescence and significantly improves
our understanding of SIF emission in line of the argument of the third factor controlling
SIF [42]. Although all such SVIs have a certain relation with the SIF, evident by their direct
connection with factors influencing the SIF emission, alone they cannot approximate SIF
due to its limited representation of plant structure and biochemical processes.

As SIF is a relatively new remote sensing signal, it also has several limitations at
local and regional levels of ground, airborne, and spaceborne measurements. The cur-
rent state-of-the-art ground-based SIF measurements are mainly offered by commercially
available high-resolution spectrometers. These measurements by high-resolution spec-
trometers are essential to better observe and interpret SIF at a relevant spatial scale to
be integrated with remote sensing observations, but they have some limitations such as
insufficient characterization of the sensor, inadequate measurement protocols, low field-of-
view (FOV), low spatial coverage, high prices [2,43]. Similarly, airborne measurements of
SIF are campaign-based, periodic and therefore data availability is limited [44,45]. Addi-
tionally, low coverage, high operating and data-processing costs (including time) indicate
some limitations of the airborne SIF measurements [43,46]. The only freely available
SIF products are based on spaceborne sensing. However, the SIF signal is very weak
and sensors used currently at satellites to retrieve SIF were not initially built for this
purpose. Hence, the satellite-retrieved SIF usually has a large footprint and large uncer-
tainties in individual retrievals [47–50]. For example, spaceborne sensors used for SIF
retrievals like the European Space Agency (ESA) and European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT)’s in-orbit Global Ozone Monitoring
Experiment–2 (GOME-2) has a pixel size of 40 × 40 km2, Japanese space agency’s (JAXA)
in-orbit Greenhouse gases Observing Satellite (GOSAT) has a circular footprint of 10.5 km
in diameter, ESA’s Tropospheric Monitoring Instrument (TROPOMI) onboard prosecutor
of Sentinel-5P has the spatial resolution of 3 × 7 km, while National Aeronautics and Space
Administration (NASA)’s Orbiting Carbon Observatory 2 (OCO-2) has a footprint size of
1.3× 2.3 km. Apart from that: (1) spatial inconsistency in homogeneous and heterogeneous
landscapes (e.g., boreal evergreen forests, the US Midwest cropland, the Indo-Gangetic
wheat belt, etc.) [51] cause inaccuracy in the SIF–GPP relationship, (2) low signal-to-noise
ratio (SNR) [52] and (3) low temporal revisit time (except GOSAT, 3 days) from 16 days
(OCO-2, TROPOMI, Tan-Sat) to 29 days (GOME-2) fails to capture the short-term temporal
diversity of structural, phenological and functional variability of plants for regional and
local level studies.

In recent years, few studies have tried to approximate the SIF through overcoming
the above-mentioned critical issues in SIF observation by considering different SIF factors
represented through spectral indices. Recently, Yang et al. [53] proposed the concept of
Fluorescence Correction Vegetation Index (FCVI) that incorporates the plant physiological
information and ground reflectances to replicate the far-red SIF (SIF760). FCVI was defined
as the difference between near-infrared (NIR) and broad-band (400–700 nm) reflectance
acquired under stable Sun-canopy-observer geometrical conditions. Similarly, the NIRv
index, which is the product of total scene NIR reflectance (NIRT), and the normalized
difference vegetation index (NDVI) also worked as the proxy of SIF and were proved to
have good agreement with large pixel GOME-2 SIF products [54]. Joiner et al. [48] also
proposed a new methodology based on principal component analysis (PCA) to retrieve
SIF in around 740 nm (SIF740) based on GOME-2 data with a spatial resolution of 0.5◦.
Gentine and Alemohammad [7] developed neural network (NN) architecture to reconstruct
SIF (RSIF) from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua
reflectance products and compared it with GOME-2 SIF740 data developed by Joiner
et al. [48]. Following a similar path, Zhang et al. [50] trained the NN model over surface
reflectance products of the MODIS data to develop contiguous SIF (CSIF) datasets and
compared it with OCO-2 SIF products. Based on a good agreement between the SIF–GPP
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relationship, many studies have simulated SIF at moderate spatial and temporal resolutions
using MODIS products [35,55,56]. Raychaudhuri [57], as well as Irteza and Nichol [58],
simulated SIF from Hyperion data. However, due to the lack of adequate atmospheric
corrections, the outcomes were not satisfactory.

All the above-mentioned studies have some advantages and some limitations. To
overcome these limitations, we proposed and validated a method that uses different
combinations of SVIs which reflect structural and functional factors influencing SIF, for the
purpose of approximating the potential SIF. Our proposed method is not only limited to
approximate the far-red SIF at 760 nm (SIF760), but it can also approximate the narrower
red band SIF at 687 nm (SIF687). For the first time, we have quantitatively approximated
SIF signals at both oxygen absorption bands through different combinations of SVIs. This
study is also the first experimental evidence that SIF signals for both SIF760 and SIF687 can
be approximated by using high spatial resolution (1 m) airborne imaging spectroscopic
data that can better describe the natural variability of the investigated area.

The experiment was conducted over both homogeneous (forest, grassland) and hetero-
geneous (peatland) landscapes where spectral variety and internal diversity were very high
and challenging to understand. Overall, in our model, we have shown how the combina-
tion of different physiological, structural, and functional vegetation traits in terms of simple
SVIs can be applied to approximate the potential SIF signals at both SIF760 (O2A/far-red)
and SIF687 (O2B/red) positions.

Therefore, following Bandopadhyay et al. [1], we have developed an integrated fuzzy
logic modelling technique to build a stepwise approximation of potential SIF from simple
reflectance-based SVIs that have a high agreement with SIF760 and SIF687 retrieved from
airborne data. To achieve the best replica of SIF from the integrated fuzzy model and test
whether the inclusion of APAR makes the model more accurate, we adopted two different
approaches: (1) direct assimilation of SVIs into the fuzzy logic model termed as SIFfuzzy, (2)
injection of APAR into the SVIs-based fuzzy logic modelled outputs termed as SIFfuzzy-APAR.
Furthermore, SIFfuzzy and SIFfuzzy-APAR were validated based on the HyPlant-derived actual
SIF data at both oxygen absorption bands. We hypothesized that the modelled proxies of
SIF will capture the structural and functional traits of diverse vegetation groups and are in
strong agreement with actual SIF signals. Further, we also hypothesized that the inclusion
of APAR into SIFfuzzy-APAR model will increase the model accuracy. We believe that the
proposed method might be applicable for ground, UAV, airborne as well as spaceborne-
based observations for both homogenous and heterogeneous ecosystems.

2. Material and Methods
2.1. Site Description

This study was conducted over Rzecin peatland and surrounded ecosystems (Figure 1)
located in the western part of Poland (52◦45′ N, 16◦18′ E, 54 m a.s.l.) [59–63].

The Rzecin peatland is included within the Natura 2000 network of protected areas
covering Europe’s most valuable and threatened species and habitats (“Torfowisko Rzecin-
skie” PLH300019). In our study, we consider not only the peatland but also the surrounding
ecosystems of grasslands and forests.
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Figure 1. Location of the Rzecin peatland, Wielkopolska region, Poland. An RGB composite map was obtained by combining
reflectance bands for the red, green, and blue bands of the HyPlant DUAL module during the Spectrometry of a Wetland
and Modelling of Photosynthesis (SWAMP) campaign on 11 July 2015. (Adopted from Bandopadhyay et al. [1]).

2.2. Airborne Data Acquisition

The airborne data adopted for this study were acquired on 11th July 2015 between
09:50 to 10:46 and 13:10 to 13:55 local time by the HyPlant airborne sensor installed on
Cessna Grand Caravan C208B aircraft [1]. The airborne imageries used in this study
were acquired over afternoon overpasses, as the morning overpasses were taken under
unstable conditions (some clouds). The aircraft was flying under cloud-free conditions at
an altitude of 690 m resulting in a spatial resolution of 1 × 1 m per pixel of the images.
The HyPlant sensor was composed of two push-broom sensors: (1) a broadband dual-
channel module (DUAL) which captured surface reflected radiance with the spectral
resolution of 3 nm in the visible and near-infrared (VIS/NIR) regions and about 10 nm in
the short-wave infrared (SWIR) region; it covered a spectral range of 370–2500 nm, and (2)
narrow-band spectrometer (FLUO module) which covered the red and far-red region of the
electromagnetic spectrum ranges from 670 to 800 nm, with a spectral resolution of 0.25 nm.
The radiance images from DUAL and FLUO modules were generated through the pre-and
post-processing chain described in Colombo et al. [3], Siegmann et al. [64], and Wieneke
et al. [65,66]. Detailed technical reports about the HyPlant imaging spectrometer, image
pre-and post-processing, sensor calibration, as well as sensor validation were described in
Rascher et al. [44].

2.3. Computation of SVIs, SIF, and APAR

Reflectance-based SVIs were derived from the TOC reflectance data acquired by
the HyPlant DUAL module (Table 1). A spatial co-registration has been conducted over
airborne scenes to avoid geometric uncertainties. For our model input, we focused on the
greenness and vegetation structure-related indices (i.e., SR, NDVI, EVI), photosynthesis and
xanthophyll cycle-related index (i.e., PRI), and red-edge position related index (NDVIre).
SR, NDVI, NDVIre, and EVI were computed with the spectral windows parallel to 9 bands
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(center wavelength ±4 of DUAL module spectral bands), while PRI was calculated using
the mean of 3 spectral bands near to 531 nm and 570 nm (center wavelength ±1 band).

The red and far-red SIF at 687 nm (SIF687/SIF O2B) and 760 nm (SIF760/SIF O2A)
respectively were retrieved from the HyPlant FLUO module spectra based on the Spectral
Fitting Method (SFM) introduced by Meroni and Colombo [67] and Meroni et al. [68]
and optimized by Cogliati et al. [69,70]. The retrieval of SIF maps at 687 nm and 760 nm
using the SFM method and data processing chain are broadly described in Bandopadhyay
et al. [1].

Table 1. Vegetation indices derived from HyPlant DUAL module reflectance data. R in the for-
mulas represents the reflectance while the numbers refer to wavelengths in nm. Adopted after
Bandopadhyay et al. [1].

Vegetation Indices Equations References

Simple Ratio (SR) SR =
R〈795−810〉
R〈665−680〉

[71]

Normalized Difference Vegetation
Index (NDVI) NDVI =

R〈795−810〉−R〈665−680〉
R〈795−810〉+R〈665−680〉

[72]

Enhanced Vegetation Index (EVI) EVI = 2.5
[

R〈795−810〉−R〈665−680〉
R〈795−810〉+6·R〈665−680〉−7.5·R〈475−490〉+1

]
[39]

Red-edge Normalized Difference
Vegetation Index (NDVIre)

NDVIre =
R〈735−750〉−R〈695−710〉
R〈735−750〉+R〈695−710〉

[73]

Photochemical Reflectance Index
(PRI)

PRI =
R〈570±2.5〉−R〈531±2.5〉
R〈570±2.5〉+R〈531±2.5〉

[74]

The SIF687 and SIF760 maps, as well as SVIs maps of SR, NDVI, EVI, NDVIre, and PRI,
were validated based on the in-situ TOC reflectance and SIF measurements conducted on
the same day of airborne campaign discussed broadly in Bandopadhyay et al. [1]. The
validation of the HyPlant derived SVIs and SIF maps at both the 687 nm and 760 nm bands
shows a good agreement with in-situ ground measured SVIs and SIFs (see Bandopadhyay
et al. [1]). This valid agreement showed the authenticity of HyPlant derived SVIs and SIF
maps which were further used in this study for fuzzy simulation.

The APAR product was computed by the multiplication of the HyPlant DUAL module
derived NDVI and PAR values [49,75] measured with BF5 sensor (DELTA-T, UK) at the
weather station placed in the middle of the Rzecin peatland. The PAR was recorded as 30
min average with CR1000 datalogger (Campbell Sci, Utah, USA). The mean value of PAR
of 1600.4 µmol m−2 s−1 was recorded between 13:00 and 14:00.

2.4. Identification and Selection of Experimental Vegetation Groups

The analyses were carried out for different vegetation groups representing different
ecosystems; in particular, 158 regions of interest (ROIs) were identified and analysed.
The selection of ROIs was based on a detailed botanical survey carried out in the period
2015–2017. Areas without botanical backgrounds were not considered in our study. To
avoid redundancy, all the 158 ROIs were subsequently categorized into 19 vegetation
groups, representing three major ecosystems of the area: (i) forest—eight vegetation groups,
(ii) grasslands—four vegetation groups, and (iii) peatland—seven vegetation groups. The
spatial distribution of vegetation groups and their names are shown in Figure 2.
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Figure 2. Location and boundaries of the 158 ROIs identified in the HyPlant RGB image and
categorized into 19 unique vegetation groups. Adopted after Bandopadhyay et al. [1].

Legend: (i) Forest vegetation groups: Herbaceous vegetation of forest clearings (HV);
wooded dunes with Pinus sylvestris L. (WDPS); semi-natural forests with Pinus sylvestris L.
(SeFPS); secondary forest communities with Pinus sylvestris L. (SFPS); Betula pendula Roth—
secondary forest communities (BPFS); riparian forests (RF); secondary forest communities
with Alnus glutinosa (L.) Gaertn. (SFAG); deciduous forest (DF); (ii) Grassland vegetation
groups: post-agriculture land (PG); pioneer vegetation of sandy and shallow soils (PVS3);
mowed meadows and mesic pastures (CM); meadows and mesic pastures (MMP); (iii) Peat-
land vegetation groups: Calcareous fens (CF); transition mires (TM); sedge vegetation (SV);
rush vegetation (RV); rush vegetation/alkaline fens (RVAF); low birch bush (LBB); alder
forest (AF).

2.5. Fuzzy Logic Modelling of SIF Proxy from Reflectance-Based Vegetation Indices

The detailed theoretical description of fuzzy logic and respective algorithms have
been extensively discussed by Zadeh [76]. In simple words, fuzzy logic simulates the
way that people make inferences and decisions based on observations. The fuzzy logic
approach allowed us to develop more flexible combinations of weighted maps and could
be readily implemented using spatial modelling language. The implementation of the
fuzzy logic technique based on simple SVIs using airborne acquired imaging spectroscopic
data to approximate the SIF signal is a very new concept and is applied for the first time. A
detailed summary of the fuzzy logic modelling approach is provided in the Supplementary
Material (SM1).

The SVIs obtained from HyPlant representing different vegetation traits have a close
relation to different components of SIF, as showed by Bandopadhyay et al. [1]. We have
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combined these SVIs and processed them through fuzzy logic modelling to develop a proxy
of potential SIF and compared the modelled SIF with the actual SIF retrievals.

First, the fuzzy membership maps were retrieved from SVIs (SR, NDVI, EVI, NDVIre,
PRI). Second, these membership maps were combined to obtain the final model output.
In order to test whether the inclusion of APAR increases the accuracy of the model, the
model outputs (SIFfuzzy) were multiplied by APAR. Further, the final modelled outputs
without (termed as SIFfuzzy) and with the injection of APAR (termed as SIFfuzzy-APAR) were
compared and validated with the actual SIF at 687 and 760 nm maps based on validated
airborne SIF data. The associated standard error (SE) and uncertainties (expressed by the
root mean square error, RMSE) were also computed. The detailed methodology of the
modelling approach is presented in Figure 3.

Figure 3. Scheme of the research methodology and different steps of data processing from HyPlant data acquisition to
model building and validation of the outputs.

2.5.1. Fuzzy Membership Transformation

Bandopadhyay et al. [1] showed the relationship between HyPlant DUAL module
derived SVIs and HyPlant FLUO module derived SIF, where SR, NDVI, EVI showed a
positive agreement with increasing SIF values, while for PRI it was reversed. In agreement
with these observations, the membership transformation functions for individual SVIs
were selected, aiming towards the perspective to simulate a fuzzy approximation of SIF.
We applied fuzzy mean-standard deviation (MS) Large function to SR, NDVI, and NDVIre,
whereas fuzzy Linear and fuzzy MS Small functions were applied for EVI and PRI respec-
tively to obtain the membership of the SVIs as input variables for the model. The fuzzy
MS Large transformation function is used when the larger input values need to receive
higher membership (1) and lower input values should receive lower membership (0). This
transformation function is quite similar to the Fuzzy Large function, except the explanation
of the function is based on a specified mean and standard deviation. Fuzzy MS Large
transformation function is highly applicable and useful if the very large values are more
likely to be a member of the set. In the HyPlant derived SR, NDVI, and NDVIre, the highest
values were 56, 0.96, and 0.55, respectively, and they received the higher memberships,
whereas, the lowest values for all indices were 0 and they received the lowest memberships
(according to the HyPlant derived SR, NDVI, NDVIre scale, see Bandopadhyay et al. [1]).
Similarly, the fuzzy Linear transformation function draws a linear function between the
user-specified minimum and maximum values. Anything towards the defined minimum
value was assigned 0 as a low membership, whereas anything towards the defined maxi-
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mum value was assigned 1 as a high membership. In our model, EVI minimum value was
set as 0 whereas the maximum value was set as 2.25 (according to the HyPlant derived EVI
scale, see Bandopadhyay et al. [1]). The fuzzy MS Small was an opposite transformation
of the fuzzy MS Large function. The fuzzy MS Small transformation function was used
when the lower input values need to receive higher membership (1) and higher input
values should receive lower membership (0). For PRI, we have used the fuzzy MS Small
transformation function due to its negative correlation to SIF, where the lowest value of
−0.43 received the highest membership and the highest value of 0.30 received the lowest
membership (according to the HyPlant derived PRI scale, see Bandopadhyay et al. [1]). The
justification for considering the membership transformation functions for individual SVIs
aiming towards the development of SIF proxy is provided in Table 2.

Table 2. The mathematical equations of membership functions and justifications for considering a membership transforma-
tion function for individual HyPlant derived SVIs.

HyPlant SVIs Membership Functions Equations Justifications References

SR

Fuzzy MS Large
µ(x) = 1− bs

x−am+bs if
x > am otherwise µ(x) = 0

Positive strong correlation
with SIF [1]

NDVI Positive strong correlation
with SIF [1]

NDVIre Positive strong correlation
with SIF

(Supplementary
Materials Figure S1)

EVI Fuzzy Linear µ(x) =
{

x−min
max−min

}
Positive poor correlation

with SIF [1]

PRI Fuzzy MS Small
x > am otherwise µ(x) = 1

µ(x) = bs
x−am+bs if

x > am otherwise µ(x) = 1

Negative correlation with
SIF [1]

2.5.2. Fuzzy Overlay Operation

The Fuzzy overlay operation combined the evidence that includes membership maps
processed in the previous step. The justified association of different combinations in
terms of memberships was highly required for the best output from fuzzy logic mod-
elling ([77]; https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/
applying-fuzzy-logic-to-overlay-rasters.htm, accessed on 15 September 2020). There are
five different types of fuzzy overlay operations that allow for such simulation: (1) Fuzzy
AND, (2) Fuzzy OR, (3) Fuzzy SUM, (4) Fuzzy Product, (5) Fuzzy Gamma. The detailed
information of these overlay functions has been discussed by Vakhshoori and Zare [78]. In
our study, we have applied the Fuzzy Gamma function to obtain the final modelled output
from the equation:

µ(x) = (Fuzzy SUM)γ ∗ (Fuzzy Product)1−γ ,

where, µ(x) denotes the Fuzzy Gamma, and γ is the power of gamma ranging between 0
and 1 that permits to control the decreasing or increasing tendency. The Fuzzy Gamma
value of 1 produces an output equal to ‘Fuzzy Sum’ and the gamma value of 0 provides
an output equal to ‘Fuzzy Product’. The Fuzzy Gamma is a kind of a balanced algebraic
product of Fuzzy Product and Fuzzy Sum, which are both raised to the power of Gamma.
The prime efficiency of Fuzzy Gamma is that it compromises the increasing effect of Fuzzy
Sum and the decreasing effect of Fuzzy Product that makes it different from the other
fuzzy overlay techniques. Moreover, the Fuzzy Gamma provides more flexibility than the
additive weighted overlay and Fuzzy Sum or Fuzzy Product approaches that control the
over-or under-estimation of the modelled outputs, which is a key focus in any physical
modelling-based estimations [79].

Finally, the Fuzzy Gamma operation has been conducted through the combining
of membership maps of the SR, NDVI, EVI, NDVIre, and PRI (i.e., MF_SR; MF_NDVI;
MF_EVI; MF_NDVIre; MF_PRI) to get the final output of the simulation, showed in the

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/applying-fuzzy-logic-to-overlay-rasters.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/applying-fuzzy-logic-to-overlay-rasters.htm
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overall schema (Figure 4). Parallelly, another modelled output has been produced with the
injection of APAR into the modelled data.

Figure 4. Schema of the fuzzy logic modelling system adopted in this study showing the progress
from the input variable to the membership transformation in order to overlay operation to the
final output.

We named the final Fuzzy Gamma modelled output as SIFfuzzy and the final APAR-
Fuzzy Gamma modelled outputs as SIFfuzzy-APAR. The validation and agreement of both
modelled outputs in reference to actual SIF signals at 760 nm and 687 nm have been con-
ducted at the vegetation group scale along with associated error and uncertainty estimations.

2.5.3. Experiment on Different Fuzzy Combinations

In order to understand which combination of vegetation traits (in terms of SVIs)
would be the most suitable to derive a proxy for actual SIF estimations and are most
sensitive to predict the SIF at 760 nm and 687 nm, we run the experiment by increasing
the number of inputs SVIs. We have tested the Fuzzy Gamma simulation incorporating
different membership combinations to identify the best combination that can approximate
the actual SIF retrievals with the highest accuracy. Different combinations of vegetation
parameters such as greenness content, biomass, xanthophyll cycle, red-edge position
assembled in six different ways are provided in Table 3 and they are applied to calculate
SIFfuzzy and SIFfuzzy-APAR.
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Table 3. The fuzzy logic model combinations with objectives and equations.

Combinations Objectives Equations Code

Combination
1 approximate SIF based on greenness and

biomass related SVIs (without/with the
inclusion of APAR)

SIFfuzzy = f (NDVI + EVI)
SIFfuzzy−APAR = f (NDVI + EVI)∗APAR C1

Combination
2

SIFfuzzy = f (SR + EVI)
SIFfuzzy−APAR = f (SR + EVI)∗APAR C2

Combination
3 approximate SIF based on greenness and

xanthophyll cycle-related SVIs (without/with
the inclusion of APAR)

SIFfuzzy = f (NDVI + PRI)
SIFfuzzy−APAR = f (NDVI + PRI)∗APAR C3

Combination
4

SIFfuzzy = f (SR + PRI)
SIFfuzzy−APAR = f (SR + PRI)∗APAR C4

Combination
5

approximate SIF based on greenness, biomass,
and xanthophyll cycle-related SVIs

(without/with the inclusion of APAR)

SIFfuzzy = f (NDVI + EVI + PRI)
SIFfuzzy−APAR = f (NDVI + EVI + PRI)∗APAR C5

Combination
6

approximate SIF based on greenness, biomass,
xanthophyll cycle, and red-edge position related

SVIs (without/with the inclusion of APAR)

SIFfuzzy = f (SR + NDVI + EVI + NDVIre + PRI)
SIFfuzzy−APAR = f (SR + NDVI + EVI + NDVIre + PRI)∗APAR C6

f stands for function.

2.6. Validation of the Model, Error and Uncertainty Estimation

Statistical operations have been conducted from the fuzzy logic modelled outputs
(from all six combinations) as well as from the actual SIF maps at 687 nm and 760 nm
based on the 19 ROIs over different vegetation groups of forest, grassland and peatland
ecosystems. The linear correlation was used to test the agreement (R2) and statistical
significance (p-value) of the relationships between modelled and actual data. The analysed
relationships were considered to be significant if the p-value obtained from the test was
lower than 0.05 (with 95% confidence interval). In order to estimate the error and associated
uncertainty between modelled and actual data, standard error (SE) and root mean square
error (RMSE) have been estimated accordingly.

SE =
σ√
n

SE =
If√
n

(1)

where, SE = standard error of the sample; σ If = sample standard deviation; n = number
of samples.

RMSE =

√√√√√ N
∑

i=1
(yi − yi′)

2

N
(2)

where, N is the number of samples, and yi and yi′ are the observed and predicted values,
respectively.

3. Results
3.1. Outcome of the Membership Maps

The individual SVI maps obtained from the HyPlant DUAL module were success-
fully transformed to fuzzy membership maps using fuzzy membership transformation
functions from Table 2. The membership transformed SVIs maps (i.e., MF_NDVI; MF_SR;
MF_EVI; MF_NDVIre; MF_PRI) are presented in Figure 5. The transformed member-
ship maps of MF_NDVI (Figure 5A), MF_SR (Figure 5B), and MF_NDVIre (Figure 5C)
showed large diversity with forests and grasslands allocated with high membership, and
deforested lands and mowed meadows associated with low membership. The MF_EVI
map (Figure 5D) is characterized by a nearly uniform nature of membership distribution;
however, it has been noticed that grasslands with dense canopies obtained the highest
membership, while deforested areas inside the forests obtained no, or low membership in
comparison to other ecosystems. The MF_PRI (Figure 5E) showed the opposite scenario
where forest and grassland received low or no membership while the Sphagnum-dominated
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groups of vegetation inside the peatland obtained the highest membership. Overall fuzzy
membership transformed maps showed diversity in the membership allocation based on
the vegetation characteristics, structural and functional compositions.

Figure 5. Membership maps of the different SVIs: (A) MF_NDVI; (B) MF_SR; (C) MF_NDVIre; (D) MF_EVI and (E) MF_PRI,
derived from the fuzzy membership transformation functions. The membership maps ranging from 0 to 1 represent no
membership to high membership, respectively.

3.2. Performance of SIFfuzzy

The SIFfuzzy simulation based on the integration of membership SVIs and fuzzy
modelling under six different combinations (C1–C6) showed a wide diversity of signals over
the experimental landscape (Figure 6). The C6 SIFfuzzy map (Figure 6F) that incorporates
all the MF_SVIs shows a good consistency of signals over pine forests and meadows.
The modelled signal over the peatland region is quite complex, whereas non-vegetated
zones like forest clearings and post-agricultural lands are characterized with very low
signals. The C6 SIFfuzzy map ranges between 0 and 0.86. Characterized with the same
consistency of signals C5 SIFfuzzy map (Figure 6E) ranges between 0 and 0.91, whereas
the C1 SIFfuzzy (Figure 6A) and C3 SIFfuzzy (Figure 6C) maps range between 0 and 0.92
in both scenarios. The simulated signal for C2 SIFfuzzy (Figure 6B) map that incorporates
MF_SR and MF_EVI ranges between 0 and 0.95 and C4 SIFfuzzy (Figure 6D) map that
incorporates MF_SR and MF_PRI ranges between 0 and 0.96. The distribution of modelled
signals for C2 SIFfuzzy and C4 SIFfuzzy were very similar to previous combinations where
pine forests and meadows were characterized with high signals and non-vegetated zones
were characterized with low signals. The complexity of signals has been observed within
peatland for all six combinations due to the wide heterogeneity of the vegetation groups.
We have also observed clear differences in the absolute values of all the modelled maps
(C1–C6) where C1 and C2 with the exclusion of PRI and inclusion of EVI showed lower
pixel values, clearly visible mainly for forests. Whereas, intensities and contrasts are much
higher for C3, C4, and C5 models with the inclusion of PRI, indicating the highest pixel
values for forest ecosystems.



Remote Sens. 2021, 13, 2545 13 of 22

Figure 6. Simulated SIFfuzzy maps developed through the integration of membership maps and
Fuzzy Gamma approach for C1–C6 combinations: (A) C1 SIFfuzzy; (B) C2 SIFfuzzy; (C) C3 SIFfuzzy;
(D) C4 SIFfuzzy; (E) C5 SIFfuzzy; and (F) C6 SIFfuzzy. The colour stretch in the left represents the range
of C1–C6 SIFfuzzy maps.

We found a good agreement between modelled SIFfuzzy and actual SIF bands at SIF760
and SIF687 for all six combinations. However, the degree of agreement differs for different
combinations (Table 4, Figure 7). The SIFfuzzy model under C4 (f (SR+PRI)) was identified
as the best performing proxy combination for SIF760 recorded with the highest R2 of 0.69
and RMSE of 0.235 mW·m−2·sr−1 nm−1 (Table 4). The second-best performing proxy
combination for SIF760 was the SIFfuzzy model under C6 (f (NDVI+EVI+NDVIre+SR+PRI))
recorded with the R2 of 0.62 and RMSE of 0.268 mW·m−2·sr−1 nm−1. However, the
simulated values of SIFfuzzy for these models (Figure 7A,E), as well as for C1 and C2
(Figure S2), were underestimated in reference to actual SIF signals at 760 nm. SIFfuzzy
models for SIF760 under C3 (f (NDVI+PRI)) and C5 (f (NDVI+EVI+PRI)) were recorded with
the lowest RMSE of 0.184 and 0.193 mW·m−2·sr−1 nm−1, respectively.

Table 4. Summary of the statistics (R2—coefficient of determination, p-value, SE—standard error, R—correlation coefficient
and RMSE—root mean square error) of linear regressions between SIFfuzzy vs. SIF760 and SIFfuzzy vs. SIF687. The statistical
operational outputs were derived based on 19 ROIs representing vegetation groups of the forest, grassland and peatland.

Combinations SIFfuzzy Functions R2 p-Value SE Pearson’s
r

RMSE
mW·m−2·sr−1 nm−1

SIFfuzzy vs. SIF760

C1 SIFfuzzy (NDVI+EVI) 0.38 <0.05 0.172 0.61 0.259
C2 SIFfuzzy (SR+EVI) 0.55 <0.001 0.167 0.74 0.300
C3 SIFfuzzy (NDVI+PRI) 0.61 <0.001 0.185 0.78 0.184
C4 SIFfuzzy (SR+PRI) 0.69 <0.001 0.176 0.83 0.235
C5 SIFfuzzy (NDVI+EVI+PRI) 0.51 <0.01 0.195 0.71 0.193
C6 SIFfuzzy (NDVI+EVI+NDVIre+SR+PRI) 0.62 <0.001 0.159 0.78 0.268

SIFfuzzy vs. SIF687

C1 SIFfuzzy (NDVI+EVI) 0.85 <0.001 0.083 0.92 0.090
C2 SIFfuzzy (SR+EVI) 0.89 <0.001 0.083 0.94 0.114
C3 SIFfuzzy (NDVI+PRI) 0.90 <0.001 0.092 0.95 0.154
C4 SIFfuzzy (SR+PRI) 0.90 <0.001 0.098 0.95 0.109
C5 SIFfuzzy (NDVI+EVI+PRI) 0.90 <0.001 0.086 0.95 0.143
C6 SIFfuzzy (NDVI+EVI+NDVIre+SR+PRI) 0.92 <0.001 0.069 0.96 0.082
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Figure 7. Scatterplots of the best performing fuzzy logic model outputs (SIFfuzzy) and actual SIFs
(SIF760 and SIF687) were determined based on HyPlant airborne data. (A,B) SIFfuzzy expressed
by f (NDVI+EVI+NDVIre+SR+PRI) under model C6; (C,D) SIFfuzzy expressed by f (NDVI+PRI)
under model C3; (E,F) SIFfuzzy expressed by f (SR+PRI) under model C4. Standard deviations are
represented in error bars. The letter abbreviations correspond to the codes of vegetation groups
presented in Figure 2.

Similarly, the SIFfuzzy model under C6 (f (NDVI+EVI+NDVIre+SR+PRI)) has been
identified as the best performing proxy combination for SIF687 recorded with the highest
R2 of 0.92 and RMSE of 0.082 mW·m−2·sr−1 nm−1 (Table 4). The second-best performing
proxy combination for SIF687 recorded with the RMSE of 0.09 mW·m−2·sr−1 nm−1 was the
SIFfuzzy model under C1 (f (NDVI+EVI)). The SIFfuzzy simulations under C3 (f (NDVI+PRI)),
C4 (f (SR+PRI)) and C5 (f (NDVI+EVI+PRI)) models, although correlated very well with
the measured SIF687 (R2 = 0.90), were recorded with a higher RMSE of 0.154, 0.109,
0.143 mW·m−2·sr−1 nm−1, respectively, and tend to overestimate the simulated SIFfuzzy
(Figure 7D,F and Figure S2). The model outputs of C2 (f (SR+EVI)) recorded with RMSE of
0.114 mW·m−2·sr−1 nm−1 tend to slightly underestimate the simulated SIFfuzzy (Figure S2),
but the rate of underestimation and difference from the best C6 model outputs is very low.

The best performing proxy combinations under models C3 and C6 have a good
agreement with the actual SIF760 (Figure 7C) and SIF687 (Figure 7B), respectively. The
agreements between modelled and actual data demonstrated that SIFfuzzy worked very well
and can approximate the actual SIF signals at 760 nm and 687 nm with an error smaller than
10% for ecosystems where the maximum SIF values are close to 1.0 mW·m−2·sr−1 nm−1.
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The diversity of SIFfuzzy signals from different vegetation groups have been observed from
these agreements too (Figure 8 and Figure S3) and they correspond well to the diversity of
SIF values shown in Bandopadhyay et al. [1].

Figure 8. Example of bar diagrams representing the modelled values of SIFfuzzy obtained from 19 ROIs; (A) SIFfuzzy as
expressed by f (NDVI+PRI) under C3; (B) SIFfuzzy as expressed by f (NDVI+EVI+NDVIre+SR+PRI) under C6. Error bars
represent the standard deviations.

We have observed from Figures 7 and 8 that within forest ecosystem DF, SPAG, SFPS,
BPFS vegetation groups gained the highest signals from the modelled SIFfuzzy under C3
and C6 combinations. The WDPS and RF gained moderate signals from the modelled
data, whereas, due to no vegetation cover, HV is characterized with poor modelled signals.
MMP was the only vegetation group within the grassland ecosystem that received the
highest signals, whereas CM, PG, PVS3 received low signals from the modelled SIFfuzzy
data. The signals obtained from the peatland ecosystem were quite complex. The AF and
LBB were the two vegetation groups within peatland that received the highest modelled
SIFfuzzy signals and RV, RVAF, SV, TM received moderate signals. The weakest modelled
signal under both combinations received CF within the peatland vegetation group. The
estimation of modelled SIFfuzzy signals for other combinations from 19 vegetation groups
is provided in Supplementary Figure S3.

3.3. Performance of SIFFuzzy-APAR

The SIFfuzzy-APAR modelled data developed through the injection of APAR into the
SIFfuzzy under six different combinations (C1–C6) showed a very prominent wide diversity
of signals over different vegetation groups as well as over different ecosystems. The detailed
outcome of the SIFfuzzy-APAR including the SIFfuzzy-APAR maps and the agreement between
modelled and actual data at both SIF bands have been provided in the Supplementary
Materials SM2.

4. Discussion

Bandopadhyay et al. [1] showed the agreement between SIF760 and SIF687 with individ-
ual SVIs at vegetation group scale under different ecosystems using HyPlant data. Although
there were quite good agreements between some of the SVIs and SIF, the relationships
were not optimum. However, an integrated fuzzy logic modelling technique incorporating
different airborne SVIs allowed us for the first time to develop a reliable proxy of SIF760
and SIF687 evident by strong agreement, statistical significances, and low uncertainties.
The SIF is influenced by different factors such as light absorption and interception, canopy
structure influencing the fluorescence escape, and light use efficiency partially related to
NPQ [80,81]. NDVI, SR, EVI, and NDVIre are greenness indices that are related to light
absorption and interception, whereas EVI and NDVIre better present the canopy structure,
thus they can be more related to fesc, while PRI is the component related to the light use
efficiency and NPQ processes [13,17]. Considering the above, we combined different SVIs
to approximate the potential SIF signals by including indices reflecting different factors
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controlling SIF emission. We proceeded by combining the greenness indices such as NDVI
and EVI (C1), as well as SR and EVI (C2) which covered SIF influencing factors related to
photon interception and canopy structure, whereas addition of PRI to greenness indices
NDVI and SR (C3, C4) covered also the light use efficiency and NPQ processes influencing
the SIF. We also combined NDVI, EVI, and PRI (C5) and NDVI, SR, EVI, NDVIre, and
PRI (C6) to cover all three SIF influencing factors to some extent. Through C1 and C2
combinations, the modelled SIFfuzzy explained between 38% and 55% of the variability in
SIF760 and from 85% to 89% for SIF687. By the C3 and C4 combinations, we approximated
SIFfuzzy which explained from 61% to 69% and 90% of the variability in SIF760 and SIF687,
respectively. Through C5 and C6 combinations, our modelled SIFfuzzy explained from 51%
to 62% and from 90% to 92% of SIF760 and SIF687 variability, respectively. The SIFfuzzy

showed the lowest RMSE with a high value of R2 in the C3 f (NDVI + PRI) model for
SIF760, and C6 f (NDVI+EVI+NDVIre+SR+PRI) model for SIF687. SIF760 is known to be
influenced by canopy chlorophyll concentration and is having less influence on canopy
structure in comparison to SIF687 where fesc plays a key role in SIF emission [65,82]. This
is probably why the addition of EVI did not improve model accuracy for SIF760. Whereas,
the best result with the combination of five SVIs for SIF687 showed the sensitivity and
complexity of SIF687. It showed that the combination of different SVIs reflecting variable
factors controlling SIF emission like photon interception, fesc, light-use efficiency, and
NPQ process improved the approximation of SIF in our models. The remaining residuals
(from 62% at C1 to 38% at C6 for SIF760 and from 15% at C1 to 8% at C6 for SIF687, see
Table 3) decreased with the increasing number of SVIs considered in the study. This may
indicate that through the inclusion of different SVIs we were able to reflect the functional
contribution of different factors controlling SIF at the top-of-canopy level. At the same time,
relatively large residuals indicated that 100% prediction by this method is not possible as
the fuzzy logic modelling process cannot mimic the functional contribution of all the differ-
ent physiological processes influencing SIF emission (such as e.g., fluorescence quantum
efficiency). This may be due to the different proportions and accuracy of SIF controlling
factors covered through SVIs. We would assume that the contribution of such residuals
may increase under the influence of stress factors over different vegetation types and hence
the applicability of such a fuzzy logic modelling approach in SIF approximation under this
condition might be limited. However, it has been evident that the ensemble of SVIs can
approximate the SIF signals in more efficient and promising ways rather than individual
SVIs representing different SIF emission factors and different vegetation traits.

The relationship of SIF with APAR is also evident and shown by several researchers
(e.g., Zhang et al., [83], Wieneke et al. [66], Wohlfart et al. [84]); hence, we added APAR
into our combined fuzzy logic model. The product of this simulation SIFfuzzy-APAR was
compared with SIF687 and SIF760 and it was observed to be best fitted to the outputs of
the C1 model including NDVI and EVI (Table S5 in SM2 Supplementary Material). The
inclusion of APAR slightly overestimated the SIF but also improved the R2 in the case of
SIF760. SIF and APAR both are energy flux, therefore an improvement of SIFfuzzy to SIF760
signal by the injecting of APAR was expected and supported by, e.g., Yang et al. [13], who
expressed SIF as a product of APAR and effective light use efficiency that directly connects
to the fluorescence yield of the canopy. Moreover, this study includes a particular time
image of the APAR and injects it with SIFfuzzy to boost the model. We assume that after
some training the use of different APAR images composed with different irradiance values
can be considered as a prime variable to scale the SIFfuzzy at a different time of the day. The
overestimation of SIFfuzzy-APAR has been particularly observed for dense forest canopies
(i.e., DF, SFPS, SFAG, SeFPS) in reference to SIF760 which was in agreement with Jung
et al. [85] and Forrester et al. [86]. For SIF687, the modelled overestimations of SIFfuzzy-APAR
have been observed in overall vegetation groups. Despite this, the overestimation of
SIF was minor and our model outputs showed that an integrated fuzzy logic model can
replicate the actual SIF values at both oxygen absorption bands and the derived model
output values were also reasonable in reference to actual ranges. The existing studies
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that simulate SIF signals from reflectance spectra mostly focused on the far-red SIF range
(ranging from around 740 nm to 760 nm) [35,50]. While, our model is proved to approximate
SIF signals not only in the far-red region but also in a narrower SIF687.

It has been well shown that SIF signals have a direct connection with the plant
photosynthetic activity, reported by several studies [2,43]. However, photosynthetic activity
has been regulated and controlled by several other aspects of plants such as vegetation
type, phenology, biomass, state of health, coverage, interactions with the environment,
etc. [51,87]. However, the individual SVIs can only be partially related to SIF. The integrated
fuzzy logic modelling technique with the combination of several SVIs and APAR tends to
minimize the differences between the predicted and actual SIF as reported in our study
and can successfully approximate the SIF signals at both oxygen absorption bands. Even
if the SIF signals were slightly overestimated, we have observed that the SIFfuzzy-APAR

produced a higher correlation (observed by improved R2 values) with actual SIF signals
in comparison to SIFfuzzy under all C1–C6 combinations. The SIFfuzzy-APAR or SIFfuzzy
not only have an agreement with the actual SIF signals at 760 nm and 687 nm but also
well represent the diversity of SIF signals within different homogenous and heterogenous
vegetation groups.

This study is the first attempt that approximates the SIF signal developed at an eco-
logically relevant scale due to the implementation of high-resolution airborne images
(1 m), whereas most of the similar studies were conceptually implemented only at satellite
levels with coarse spatial resolution. Hence, it is evident that trait-sensitive SVIs were well
capable to act as a proxy for SIF if they were modelled properly, such as through integrated
fuzzy logic modelling techniques, in agreement with Zhang et al. [50,83] and Guo et al. [35].
Figure 7 and Figure S10 (SM2 Supplementary Material) showed a good correlation between
HyPlant-derived SIF values and modelled SIFfuzzy and SIFfuzzy-APAR for different vegetation
groups. Thus, it means that the assimilation of plant physiological and biophysical informa-
tion through fuzzy logic modelling was capable not only to approximate SIF but can also
provide vital information on vegetation diversity [88]. The vegetation canopy structure
influences the absorption, scattering, transmission of plants that directly affects the overall
emission of fluorescence photons at the top of the canopy [89,90]. This is why, due to
lower photosynthetic activities and no green cover, the deforested area, mowed meadows,
and post-agricultural lands have been characterized with no values in our modelled data.
Inside the peatland, alder forest and low birch bush were characterized with higher values
of SIFfuzzy and SIFfuzzy-APAR, whereas transition mires were characterized with low values
of SIFfuzzy.

However, in this study, the fuzzy logic model has been applied over a local scale using
HyPlant data. A similar methodological approach should be implemented at global scales
for different ecosystems in order to verify the validity of the proposed new method of SIF
approximation.

5. Conclusions

The novel development of our research termed as SIFfuzzy and SIFfuzzy-APAR was the
first experimental evidence for quantitative demonstration of the fuzzy logic approach
showing that the combination of SIF influencing factors represented by different SVIs can
approximate the potential SIF signals at both oxygen absorption bands at 760 nm and
687 nm. It also demonstrated the efficiency of the integrated fuzzy logic model towards
the step-by-step approximation of SIF signals through a process-based approach. This is
also the first study that considers the red fluorescence into the prediction process which is
extremely new and not covered in other published works.

Our experiment was also the first that reports the ability of simple airborne reflectance-
based SVIs to produce a proxy of potential SIF. Both SIFfuzzy and SIFfuzzy-APAR worked
quite accurately to approximate the SIF signals, where SIFfuzzy were closer to SIF687 values,
whereas SIFfuzzy-APAR were better correlated with SIF760 as expressed by higher R2 and
lower RMSE.



Remote Sens. 2021, 13, 2545 18 of 22

Hence, it has been evident and recommended that the utilization of SIFfuzzy under
models C3 and C4 for SIF760 and C6 for SIF687 or SIFfuzzy-APAR under C6 for both SIF760
and SIF687 would be the optimum solution to develop the proxy of potential SIF signals at
760 nm and 687 nm with high accuracy. The study also showed that EVI and NDVI, which
can be available from spaceborne products, can be used to approximate the SIF signals to
some extent. Although this study employed one-day airborne campaign data, the outcome
of this study demonstrated a promising method to develop a proxy of potential SIF, where
and when SIF data are not easily available or under data constraint situations. Though the
proposed method does not have a significant impact on the change of observation day, slight
changes in the agreements may occur during seasonal changes and atmospheric anomalies.

As we have applied the HyPlant airborne datasets, which is the airborne demonstrator
for Fluorescence Explorer (FLEX) Sentinel 3 FLORIS satellite, we believe our study will
significantly contribute to the ESA FLEX mission research and existing SIF studies. We
believe also that the contribution from our study and the development of SIFfuzzy, and
SIFfuzzy-APAR models will enrich our understanding of SIF science and global carbon cycles.
We have not performed the SIFfuzzy and SIFfuzzy-APAR on the satellite dataset, but we
believe that the model will work for it (however, it still needs to be validated). Thus, the
proposed model is possible to be applied through satellite-derived SVIs from Sentinel 2,
Landsat, MODIS, etc. to develop a SIF proxy and can be related to SIF products retrieved
from spaceborne OCO-2 or GOME-2 satellites. We proved that our modelled SIFfuzzy
and SIFfuzzy-APAR are capable to reflect the diversity of potential plant photosynthetic
activity from multiple ecosystems. Therefore, such studies may further develop our
knowledge of the local, regional and global photosynthetic activity and the carbon cycle in
natural ecosystems.
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