001     893672
005     20240712101008.0
024 7 _ |a 10.5194/amt-14-2501-2021
|2 doi
024 7 _ |a 1867-1381
|2 ISSN
024 7 _ |a 1867-8548
|2 ISSN
024 7 _ |a 2128/27987
|2 Handle
024 7 _ |a altmetric:103056331
|2 altmetric
024 7 _ |a WOS:000636627500003
|2 WOS
037 _ _ |a FZJ-2021-02744
082 _ _ |a 550
100 1 _ |a Zaytsev, Alexander
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
260 _ _ |a Katlenburg-Lindau
|c 2021
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625149092_28772
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Short-lived highly reactive atmospheric species, such as organic peroxy radicals (RO2) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation of many natural and anthropogenic trace gases in the atmosphere. Direct speciated measurements of these components are extremely helpful for understanding their atmospheric fate and impact. We describe the development of an online method for measurements of SCIs and RO2 in laboratory experiments using chemical derivatization and spin trapping techniques combined with H3O+ and NH+4 chemical ionization mass spectrometry (CIMS). Using chemical derivatization agents with low proton affinity, such as electron-poor carbonyls, we scavenge all SCIs produced from a wide range of alkenes without depleting CIMS reagent ions. Comparison between our measurements and results from numeric modeling, using a modified version of the Master Chemical Mechanism, shows that the method can be used for the quantification of SCIs in laboratory experiments with a detection limit of 1.4×107 molecule cm−3 for an integration time of 30 s with the instrumentation used in this study. We show that spin traps are highly reactive towards atmospheric radicals and form stable adducts with them by studying the gas-phase kinetics of the reaction of spin traps with the hydroxyl radical (OH). We also demonstrate that spin trap adducts with SCIs and RO2 can be simultaneously probed and quantified under laboratory conditions with a detection limit of 1.6×108 molecule cm−3 for an integration time of 30 s for RO2 species with the instrumentation used in this study. Spin trapping prevents radical secondary reactions and cycling, ensuring that measurements are not biased by chemical interferences, and it can be implemented for detecting RO2 species in laboratory studies and potentially in the ambient atmosphere.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Breitenlechner, Martin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 2
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 3
700 1 _ |a Knopf, Daniel A.
|0 0000-0001-7732-3922
|b 4
700 1 _ |a Kroll, Jesse H.
|0 0000-0002-6275-521X
|b 5
700 1 _ |a Keutsch, Frank N.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.5194/amt-14-2501-2021
|g Vol. 14, no. 3, p. 2501 - 2513
|0 PERI:(DE-600)2505596-3
|n 3
|p 2501 - 2513
|t Atmospheric measurement techniques
|v 14
|y 2021
|x 1867-8548
856 4 _ |u https://juser.fz-juelich.de/record/893672/files/amt-14-2501-2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893672
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)7363
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS MEAS TECH : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21