000893676 001__ 893676
000893676 005__ 20240711092240.0
000893676 0247_ $$2doi$$a10.1103/PhysRevB.103.184111
000893676 0247_ $$2ISSN$$a1098-0121
000893676 0247_ $$2ISSN$$a2469-9977
000893676 0247_ $$2ISSN$$a0163-1829
000893676 0247_ $$2ISSN$$a0556-2805
000893676 0247_ $$2ISSN$$a1095-3795
000893676 0247_ $$2ISSN$$a1538-4489
000893676 0247_ $$2ISSN$$a1550-235X
000893676 0247_ $$2ISSN$$a2469-9950
000893676 0247_ $$2ISSN$$a2469-9969
000893676 0247_ $$2Handle$$a2128/28033
000893676 0247_ $$2WOS$$aWOS:000655899000002
000893676 037__ $$aFZJ-2021-02748
000893676 082__ $$a530
000893676 1001_ $$0P:(DE-Juel1)173887$$aWang, Kai$$b0$$ufzj
000893676 245__ $$aQuantitative nondiagonal phase field modeling of eutectic and eutectoid transformations
000893676 260__ $$aWoodbury, NY$$bInst.$$c2021
000893676 3367_ $$2DRIVER$$aarticle
000893676 3367_ $$2DataCite$$aOutput Types/Journal article
000893676 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630414499_10533
000893676 3367_ $$2BibTeX$$aARTICLE
000893676 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893676 3367_ $$00$$2EndNote$$aJournal Article
000893676 500__ $$aISSN 2469-9969 not unique: **2 hits**.
000893676 520__ $$aWe develop a three-phase field model for the simulation of eutectic and eutectoid transformations on the basis of a nondiagonal model obeying Onsager relations for a kinetic cross coupling between diffusion and the phase fields. This model overcomes the limitations of existing phase field models concerning the fulfillment of local equilibrium boundary conditions at the transformation fronts in the case of a finite diffusional contrast between the phases. We benchmark our model in the well understood one-sided case with diffusion only in the parent phase against results from the literature. In addition to this solidification scenario, the case of solid-state transformations with diffusion in the growing phases is investigated. Our simulations validate the relevance of the theory developed by Ankit et al. [Acta Mater. 61, 4245 (2013)], that describes in a single frame the two limiting regimes where diffusion mainly takes place whether in the mother phase or in the growing phases. In both the one-sided and two-sided cases, we verify the necessity of the kinetic cross coupling for quantitative phase field simulations.
000893676 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000893676 536__ $$0G:(DE-Juel1)jiek2c_20191101$$aBattery Failure - Interfacial stability and non-diagonal phase field models (jiek2c_20191101)$$cjiek2c_20191101$$fBattery Failure - Interfacial stability and non-diagonal phase field models$$x1
000893676 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893676 7001_ $$0P:(DE-Juel1)130562$$aBoussinot, Guillaume$$b1
000893676 7001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b2
000893676 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b3$$eCorresponding author
000893676 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.184111$$gVol. 103, no. 18, p. 184111$$n18$$p184111$$tPhysical review / B$$v103$$x2469-9969$$y2021
000893676 8564_ $$uhttps://juser.fz-juelich.de/record/893676/files/Quantitative%20nondiagonal%20-%20Wang.pdf$$yOpenAccess
000893676 909CO $$ooai:juser.fz-juelich.de:893676$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173887$$aForschungszentrum Jülich$$b0$$kFZJ
000893676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b2$$kFZJ
000893676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b3$$kFZJ
000893676 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000893676 9141_ $$y2021
000893676 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893676 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893676 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893676 920__ $$lyes
000893676 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000893676 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000893676 9801_ $$aFullTexts
000893676 980__ $$ajournal
000893676 980__ $$aVDB
000893676 980__ $$aI:(DE-Juel1)IEK-2-20101013
000893676 980__ $$aI:(DE-82)080012_20140620
000893676 980__ $$aUNRESTRICTED
000893676 981__ $$aI:(DE-Juel1)IMD-1-20101013