001     893676
005     20240711092240.0
024 7 _ |a 10.1103/PhysRevB.103.184111
|2 doi
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/28033
|2 Handle
024 7 _ |a WOS:000655899000002
|2 WOS
037 _ _ |a FZJ-2021-02748
082 _ _ |a 530
100 1 _ |a Wang, Kai
|0 P:(DE-Juel1)173887
|b 0
|u fzj
245 _ _ |a Quantitative nondiagonal phase field modeling of eutectic and eutectoid transformations
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630414499_10533
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 2469-9969 not unique: **2 hits**.
520 _ _ |a We develop a three-phase field model for the simulation of eutectic and eutectoid transformations on the basis of a nondiagonal model obeying Onsager relations for a kinetic cross coupling between diffusion and the phase fields. This model overcomes the limitations of existing phase field models concerning the fulfillment of local equilibrium boundary conditions at the transformation fronts in the case of a finite diffusional contrast between the phases. We benchmark our model in the well understood one-sided case with diffusion only in the parent phase against results from the literature. In addition to this solidification scenario, the case of solid-state transformations with diffusion in the growing phases is investigated. Our simulations validate the relevance of the theory developed by Ankit et al. [Acta Mater. 61, 4245 (2013)], that describes in a single frame the two limiting regimes where diffusion mainly takes place whether in the mother phase or in the growing phases. In both the one-sided and two-sided cases, we verify the necessity of the kinetic cross coupling for quantitative phase field simulations.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a Battery Failure - Interfacial stability and non-diagonal phase field models (jiek2c_20191101)
|0 G:(DE-Juel1)jiek2c_20191101
|c jiek2c_20191101
|f Battery Failure - Interfacial stability and non-diagonal phase field models
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Boussinot, Guillaume
|0 P:(DE-Juel1)130562
|b 1
700 1 _ |a Brener, Efim A.
|0 P:(DE-Juel1)130567
|b 2
700 1 _ |a Spatschek, Robert
|0 P:(DE-Juel1)130979
|b 3
|e Corresponding author
773 _ _ |a 10.1103/PhysRevB.103.184111
|g Vol. 103, no. 18, p. 184111
|0 PERI:(DE-600)2844160-6
|n 18
|p 184111
|t Physical review / B
|v 103
|y 2021
|x 2469-9969
856 4 _ |u https://juser.fz-juelich.de/record/893676/files/Quantitative%20nondiagonal%20-%20Wang.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893676
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173887
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130979
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2019
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21