000893679 001__ 893679
000893679 005__ 20240711092240.0
000893679 0247_ $$2doi$$a10.1038/s41467-021-22806-9
000893679 0247_ $$2Handle$$a2128/27989
000893679 0247_ $$2altmetric$$aaltmetric:88081933
000893679 0247_ $$2pmid$$a33972526
000893679 0247_ $$2WOS$$aWOS:000678721800003
000893679 037__ $$aFZJ-2021-02751
000893679 082__ $$a500
000893679 1001_ $$0P:(DE-Juel1)130567$$aBrener, Efim A.$$b0$$eCorresponding author$$ufzj
000893679 245__ $$aUnconventional singularities and energy balance in frictional rupture
000893679 260__ $$a[London]$$bNature Publishing Group UK$$c2021
000893679 3367_ $$2DRIVER$$aarticle
000893679 3367_ $$2DataCite$$aOutput Types/Journal article
000893679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625211248_30730
000893679 3367_ $$2BibTeX$$aARTICLE
000893679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893679 3367_ $$00$$2EndNote$$aJournal Article
000893679 520__ $$aA widespread framework for understanding frictional rupture, such as earthquakes along geological faults, invokes an analogy to ordinary cracks. A distinct feature of ordinary cracks is that their near edge fields are characterized by a square root singularity, which is intimately related to the existence of strict dissipation-related lengthscale separation and edge-localized energy balance. Yet, the interrelations between the singularity order, lengthscale separation and edge-localized energy balance in frictional rupture are not fully understood, even in physical situations in which the conventional square root singularity remains approximately valid. Here we develop a macroscopic theory that shows that the generic rate-dependent nature of friction leads to deviations from the conventional singularity, and that even if this deviation is small, significant non-edge-localized rupture-related dissipation emerges. The physical origin of the latter, which is predicted to vanish identically in the crack analogy, is the breakdown of scale separation that leads an accumulated spatially-extended dissipation, involving macroscopic scales. The non-edge-localized rupture-related dissipation is also predicted to be position dependent. The theoretical predictions are quantitatively supported by available numerical results, and their possible implications for earthquake physics are discussed.
000893679 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000893679 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893679 7001_ $$00000-0001-8821-1635$$aBouchbinder, Eran$$b1
000893679 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-22806-9$$gVol. 12, no. 1, p. 2585$$n1$$p2585$$tNature Communications$$v12$$x2041-1723$$y2021
000893679 8564_ $$uhttps://juser.fz-juelich.de/record/893679/files/s41467-021-22806-9.pdf$$yOpenAccess
000893679 909CO $$ooai:juser.fz-juelich.de:893679$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130567$$aForschungszentrum Jülich$$b0$$kFZJ
000893679 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000893679 9141_ $$y2021
000893679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000893679 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893679 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893679 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000893679 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000893679 9801_ $$aFullTexts
000893679 980__ $$ajournal
000893679 980__ $$aVDB
000893679 980__ $$aUNRESTRICTED
000893679 980__ $$aI:(DE-Juel1)IEK-2-20101013
000893679 981__ $$aI:(DE-Juel1)IMD-1-20101013