000893710 001__ 893710
000893710 005__ 20240313103120.0
000893710 0247_ $$2Handle$$a2128/28439
000893710 037__ $$aFZJ-2021-02782
000893710 041__ $$aEnglish
000893710 1001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b0$$eCorresponding author$$ufzj
000893710 1112_ $$aInternational Conference of Mathematical Neuroscience$$cOnline$$d2021-06-28 - 2021-07-01$$gICMNS 2021$$wGermany
000893710 245__ $$aSurrogate techniques for testing higher order correlations in parallel spike trains
000893710 260__ $$c2021
000893710 3367_ $$033$$2EndNote$$aConference Paper
000893710 3367_ $$2DataCite$$aOther
000893710 3367_ $$2BibTeX$$aINPROCEEDINGS
000893710 3367_ $$2DRIVER$$aconferenceObject
000893710 3367_ $$2ORCID$$aLECTURE_SPEECH
000893710 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1628575224_15849$$xInvited
000893710 520__ $$aSpike train surrogates are an essential methodology to assess significance of statistical properties of electrophysiological data. Numerous methods have been already introduced (Date 1998, Gruen et al. 2009, Louis et al. 2010, Pipa et al. 2002,2003,2007, Smith and Kohn 2008, Ricci et al. 2019) and the resulting properties studied in depth, in particular for the case of spike time correlations (Gruen et al. 2009, Louis et al. 2010).The temporal scale of higher-order spike coordination in cortex is still debated in the field (Shadlen and Newsome 1998, London et al. 2010, Mokeichev et al. 2007, Russo et al. 2018, Williams et al. 2020). Moreover, it still has to be investigated from which intrinsic statistical characteristics (e.g. firing rate co-modulations, CV, ISI distribution) have influence in the formation of spike patterns. The choice of the surrogate technique is central, since it determines the null hypothesis, where higher order correlation is not a feature of the spike train, i.e. spike trains are mutually independent and only chance correlations are present. For the case of statistical testing for precise temporal correlations, the classical surrogate choice is Uniform Dithering (Date et al. 1998).Here we show a number of problematics arising from the application of Uniform Dithering in the context of testing fine-tune temporal correlation in form of spatio-temporal spike patterns with the SPADE method (Torre et al. 2013/2016, Quaglio et al. 2017, Stella et al. 2019). We use already developed surrogate techniques and introduce new ones, and study analytically (when possible) and through simulations the statistical features that are kept and destroyed from surrogate manipulation. Finally, we generate artificial datasets modeled on real experimental data through non stationary point process models, such as Poisson process, Poisson process with dead time (Deger et al. 2011) and Gamma process, comparing the outcome of the SPADE analysis across surrogate techniques.
000893710 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000893710 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000893710 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x2
000893710 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000893710 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x4
000893710 7001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b1$$ufzj
000893710 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000893710 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000893710 8564_ $$uhttps://juser.fz-juelich.de/record/893710/files/stella_ICMNS2021.pdf$$yOpenAccess
000893710 909CO $$ooai:juser.fz-juelich.de:893710$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000893710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b0$$kFZJ
000893710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b1$$kFZJ
000893710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000893710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000893710 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000893710 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000893710 9141_ $$y2021
000893710 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893710 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000893710 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000893710 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000893710 9801_ $$aFullTexts
000893710 980__ $$aconf
000893710 980__ $$aVDB
000893710 980__ $$aUNRESTRICTED
000893710 980__ $$aI:(DE-Juel1)INM-6-20090406
000893710 980__ $$aI:(DE-Juel1)IAS-6-20130828
000893710 980__ $$aI:(DE-Juel1)INM-10-20170113
000893710 981__ $$aI:(DE-Juel1)IAS-6-20130828