001     893710
005     20240313103120.0
024 7 _ |a 2128/28439
|2 Handle
037 _ _ |a FZJ-2021-02782
041 _ _ |a English
100 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Conference of Mathematical Neuroscience
|g ICMNS 2021
|c Online
|d 2021-06-28 - 2021-07-01
|w Germany
245 _ _ |a Surrogate techniques for testing higher order correlations in parallel spike trains
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1628575224_15849
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Spike train surrogates are an essential methodology to assess significance of statistical properties of electrophysiological data. Numerous methods have been already introduced (Date 1998, Gruen et al. 2009, Louis et al. 2010, Pipa et al. 2002,2003,2007, Smith and Kohn 2008, Ricci et al. 2019) and the resulting properties studied in depth, in particular for the case of spike time correlations (Gruen et al. 2009, Louis et al. 2010).The temporal scale of higher-order spike coordination in cortex is still debated in the field (Shadlen and Newsome 1998, London et al. 2010, Mokeichev et al. 2007, Russo et al. 2018, Williams et al. 2020). Moreover, it still has to be investigated from which intrinsic statistical characteristics (e.g. firing rate co-modulations, CV, ISI distribution) have influence in the formation of spike patterns. The choice of the surrogate technique is central, since it determines the null hypothesis, where higher order correlation is not a feature of the spike train, i.e. spike trains are mutually independent and only chance correlations are present. For the case of statistical testing for precise temporal correlations, the classical surrogate choice is Uniform Dithering (Date et al. 1998).Here we show a number of problematics arising from the application of Uniform Dithering in the context of testing fine-tune temporal correlation in form of spatio-temporal spike patterns with the SPADE method (Torre et al. 2013/2016, Quaglio et al. 2017, Stella et al. 2019). We use already developed surrogate techniques and introduce new ones, and study analytically (when possible) and through simulations the statistical features that are kept and destroyed from surrogate manipulation. Finally, we generate artificial datasets modeled on real experimental data through non stationary point process models, such as Poisson process, Poisson process with dead time (Deger et al. 2011) and Gamma process, comparing the outcome of the SPADE analysis across surrogate techniques.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 2
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 4
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 1
|u fzj
700 1 _ |a Palm, Günther
|0 P:(DE-Juel1)172768
|b 2
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/893710/files/stella_ICMNS2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893710
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144168
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21