000893738 001__ 893738
000893738 005__ 20240708132701.0
000893738 0247_ $$2doi$$a10.1016/j.actamat.2021.117025
000893738 0247_ $$2ISSN$$a1359-6454
000893738 0247_ $$2ISSN$$a1873-2453
000893738 0247_ $$2Handle$$a2128/28032
000893738 0247_ $$2altmetric$$aaltmetric:106869696
000893738 0247_ $$2WOS$$aWOS:000684229400014
000893738 037__ $$aFZJ-2021-02793
000893738 082__ $$a670
000893738 1001_ $$0P:(DE-Juel1)176279$$aBadie, Sylvain$$b0$$eCorresponding author
000893738 245__ $$aMechanism for breakaway oxidation of the Ti2AlC MAX phase1
000893738 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000893738 3367_ $$2DRIVER$$aarticle
000893738 3367_ $$2DataCite$$aOutput Types/Journal article
000893738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625651254_26955
000893738 3367_ $$2BibTeX$$aARTICLE
000893738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893738 3367_ $$00$$2EndNote$$aJournal Article
000893738 520__ $$aThe good oxidation resistance of MAX phases up to temperatures around 1200 °C can be compromised for long exposure due to the breakaway of the protective alumina layer. Herein, we unveil a mechanism of breakaway oxidation of the Ti2AlC MAX phase, identifying the main trigger and the solutions to avoid it. It is caused by excessive rumpling of the oxide scale on surfaces with arithmetical mean roughness (Ra) > 3 µm and constitutes a key factor in subsequent consumption of Ti2AlC. First, the oxide scale experienced rumpling due to significant radial stresses generated at the Ti2AlC/oxide interface. Second, scale blistering resulted from substantial buckling due to the evolution of in-plane stresses and lateral lengthening. Third, blister collapse and exposure of the underlying Al-depleted Ti2AlC surface led to rapid ingress of oxygen and oxide/substrate interface recession. The self-healing ability of Ti2AlC has been restrained and breakaway oxidation kinetics following a linear trend have been initiated. Similarly, breakaway oxidation was observed on micro-damaged surfaces. A mixed oxide layer with high porosity mainly composed of rutile titanium dioxide (TiO2) promptly formed on these surfaces, gradually consuming the base Ti2AlC material.
000893738 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000893738 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893738 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b1
000893738 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b2$$ufzj
000893738 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000893738 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b4$$ufzj
000893738 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2021.117025$$gVol. 215, p. 117025 -$$p117025 -$$tActa materialia$$v215$$x1359-6454$$y2021
000893738 8564_ $$uhttps://juser.fz-juelich.de/record/893738/files/Mechanism_for_breakaway_oxidation_of_the_Ti2AlC_MAX_phase%20PDF.pdf$$yPublished on 2021-08-01. Available in OpenAccess from 2023-08-01.
000893738 909CO $$ooai:juser.fz-juelich.de:893738$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176279$$aForschungszentrum Jülich$$b0$$kFZJ
000893738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b1$$kFZJ
000893738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000893738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000893738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b4$$kFZJ
000893738 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000893738 9141_ $$y2021
000893738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893738 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2019$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2019$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000893738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000893738 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893738 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000893738 9801_ $$aFullTexts
000893738 980__ $$ajournal
000893738 980__ $$aVDB
000893738 980__ $$aUNRESTRICTED
000893738 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893738 980__ $$aI:(DE-82)080011_20140620
000893738 981__ $$aI:(DE-Juel1)IMD-2-20101013