000893759 001__ 893759
000893759 005__ 20210710135200.0
000893759 0247_ $$2Handle$$a2128/28074
000893759 037__ $$aFZJ-2021-02814
000893759 041__ $$aEnglish
000893759 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj
000893759 1112_ $$aPhiladelphia/Harrisburg Quantum Computing Meetup$$cPhiladelphia$$d2021-06-24 - 2021-06-24$$wUSA
000893759 245__ $$aBenchmarking GPU Clusters with the Jülich Universal Quantum Computer Simulator$$f2021-06-24 -
000893759 260__ $$c2021
000893759 3367_ $$033$$2EndNote$$aConference Paper
000893759 3367_ $$2DataCite$$aOther
000893759 3367_ $$2BibTeX$$aINPROCEEDINGS
000893759 3367_ $$2ORCID$$aLECTURE_SPEECH
000893759 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1625902656_30350$$xInvited
000893759 3367_ $$2DINI$$aOther
000893759 520__ $$aSimulating quantum computers is a versatile way to benchmark supercomputers with thousands of GPUs. We'll explain quantum computer simulators from a linear algebra perspective, using the Jülich Universal Quantum Computer Simulator (JUQCS) as an example. We'll show how the memory-, network-, and computation-intensive operations of JUQCS can be used to benchmark high-performance computers. In particular, we'll illustrate the CUDA-aware message-passing interface communication scheme. We present results for benchmarking JUWELS Booster, a cluster with 3,744 NVIDIA A100 Tensor Core GPUs.
000893759 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000893759 536__ $$0G:(DE-HGF)POF4-5121$$a5121 - Supercomputing & Big Data Facilities (POF4-512)$$cPOF4-512$$fPOF IV$$x1
000893759 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b1$$ufzj
000893759 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b2$$ufzj
000893759 8564_ $$uhttps://youtu.be/JUSEYCkh2ac
000893759 8564_ $$uhttps://juser.fz-juelich.de/record/893759/files/juqcs-g-1.pdf$$yOpenAccess
000893759 909CO $$ooai:juser.fz-juelich.de:893759$$popenaire$$popen_access$$pVDB$$pdriver
000893759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ
000893759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b1$$kFZJ
000893759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b2$$kFZJ
000893759 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000893759 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5121$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x1
000893759 9141_ $$y2021
000893759 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893759 920__ $$lyes
000893759 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000893759 980__ $$atalk
000893759 980__ $$aVDB
000893759 980__ $$aUNRESTRICTED
000893759 980__ $$aI:(DE-Juel1)JSC-20090406
000893759 9801_ $$aFullTexts