000893763 001__ 893763
000893763 005__ 20240712084603.0
000893763 0247_ $$2doi$$a10.5281/ZENODO.5034714
000893763 0247_ $$2Handle$$a2128/28056
000893763 037__ $$aFZJ-2021-02818
000893763 041__ $$aEnglish
000893763 1001_ $$0P:(DE-Juel1)130414$$aSchreinemachers, Christian$$b0$$eCorresponding author
000893763 1112_ $$aUranium Science 2021$$cvirtual event$$d2021-06-29 - 2021-07-01$$wUK
000893763 245__ $$aHydrolysis of uranium(VI), neodymium(III) and cerium(III/IV) by thermal decomposition of urea
000893763 260__ $$c2021
000893763 3367_ $$033$$2EndNote$$aConference Paper
000893763 3367_ $$2DataCite$$aOther
000893763 3367_ $$2BibTeX$$aINPROCEEDINGS
000893763 3367_ $$2DRIVER$$aconferenceObject
000893763 3367_ $$2ORCID$$aLECTURE_SPEECH
000893763 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1625895048_29986$$xOther
000893763 520__ $$a<p><strong>Abstract</strong></p> <p>Uranium dioxide is used as conventional fuel for the production of energy by nuclear fission. Even though the front-end of the nuclear fuel cycle is well known, studies to investigate alternative fabrication routes to prepare precursors for oxidic uranium-based fuels are ongoing. The precipitation induced by thermal decomposition of urea has been demonstrated for several metals (e.g. Ti, Ni, Cu, Zn, Ce, Th), and a modified hydrothermal approach has been applied to precipitate ammonium diuranate (ADU) from a solution containing uranyl ions.</p> <p>Within this study, we investigated the hydrolysis behaviour of uranyl and lanthanide mixtures to support the development of alternative fabrication routes for transmutation fuel, such as sol-gel processes. The lanthanides Nd and Ce acted as surrogates for the actinides Am and Pu, respectively. We specifically sought out parameters for the hydrolysis of uranyl ions induced by thermal decomposition of urea at ambient pressure. Moreover, the hydrolysis behaviour of Nd(III), Ce(III) and Ce(IV), as well as mixtures of the lanthanide- and uranyl ions, was investigated using the conditions determined for uranyl. Hydrolysis experiments were carried out at 90 °C and 100 °C for <em>n</em>(urea) : <em>n</em>(UO<sub>2</sub><sup>2+</sup>) ratios of 26 and 52. The solution was sampled during the precipitation reaction to monitor its pH and certain samples were analysed applying UV/VIS spectroscopy and inductively coupled plasma mass spectrometry, while powder X-ray diffraction and scanning electron microscopy were applied to characterise the precipitates.</p> <p>Uranyl ions hydrolysed between pH 5.1 and pH 5.5 and the experimental conditions impacted the reaction kinetics significantly. A temperature increase from 90 °C to 100 °C reduced the time to finish the precipitation by about 66 %, whereas a doubling of the urea content decreased the reaction time by about 33 %. ADU precipitates of different composition (<em>x</em> UO<sub>3</sub> · <em>y</em> NH<sub>3</sub> · <em>z</em> H<sub>2</sub>O) formed under the applied conditions. For trivalent Nd and Ce, a comparable pH evolution and lanthanide carbonate hydroxide (<em>Ln</em>CO<sub>3</sub>OH) products were observed, whereas tetravalent Ce hydrolysed at a lower pH forming CeO<sub>2</sub>. The precipitation behaviour was confirmed for solutions containing binary mixtures of uranyl and lanthanide cations, while a simultaneous precipitation of Nd(III) and Ce(III)<br> was observed for ternary U/Nd/Ce compositions. For the latter, a partial incorporation of the <em>Ln </em>phase into the ADU phase was observed, whereas the precipitation in the presence of Ce(IV)/CeO<sub>2</sub> led to the formation of three separate phases. In this contribution we will report and discuss the experimental results.</p>
000893763 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000893763 536__ $$0G:(EU-Grant)755171$$aGENIORS - GEN IV Integrated Oxide fuels recycling strategies (755171)$$c755171$$fNFRP-2016-2017-1$$x1
000893763 588__ $$aDataset connected to DataCite
000893763 650_7 $$2Other$$auranium
000893763 650_7 $$2Other$$aneodymium
000893763 650_7 $$2Other$$acerium
000893763 650_7 $$2Other$$aammonium diuranate
000893763 650_7 $$2Other$$aADU
000893763 650_7 $$2Other$$aNuclear fuel fabrication
000893763 650_7 $$2Other$$aCo-conversion
000893763 650_7 $$2Other$$aGenIV
000893763 650_7 $$2Other$$apH
000893763 650_7 $$2Other$$aXRD
000893763 650_7 $$2Other$$aSEM
000893763 7001_ $$0P:(DE-HGF)0$$aBollen, Olivier$$b1
000893763 7001_ $$00000-0001-6828-8248$$aLeinders, Gregory$$b2
000893763 7001_ $$00000-0001-7149-1343$$aTyrpekl, Václav$$b3
000893763 7001_ $$0P:(DE-Juel1)130383$$aModolo, Giuseppe$$b4
000893763 7001_ $$00000-0002-2385-6093$$aVerwerft, Marc$$b5
000893763 7001_ $$00000-0003-4768-3606$$aBinnemans, Koen$$b6
000893763 7001_ $$00000-0002-2695-1002$$aCardinaels, Thomas$$b7
000893763 773__ $$a10.5281/ZENODO.5034714
000893763 8564_ $$uhttps://juser.fz-juelich.de/record/893763/files/Schreinemachers2021_U-science.pdf$$yOpenAccess
000893763 909CO $$ooai:juser.fz-juelich.de:893763$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000893763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130414$$aForschungszentrum Jülich$$b0$$kFZJ
000893763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130383$$aForschungszentrum Jülich$$b4$$kFZJ
000893763 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000893763 9141_ $$y2021
000893763 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893763 920__ $$lyes
000893763 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000893763 9801_ $$aFullTexts
000893763 980__ $$aconf
000893763 980__ $$aVDB
000893763 980__ $$aUNRESTRICTED
000893763 980__ $$aI:(DE-Juel1)IEK-6-20101013
000893763 981__ $$aI:(DE-Juel1)IFN-2-20101013