000893782 001__ 893782
000893782 005__ 20240313094845.0
000893782 037__ $$aFZJ-2021-02826
000893782 041__ $$aEnglish
000893782 1001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b0$$eCorresponding author
000893782 1112_ $$aCNS conference$$cOnline$$d2021-07-03 - 2021-07-07$$wOnline
000893782 245__ $$aSequence learning, prediction, and generation in networks of spiking neurons
000893782 260__ $$c2021
000893782 3367_ $$033$$2EndNote$$aConference Paper
000893782 3367_ $$2BibTeX$$aINPROCEEDINGS
000893782 3367_ $$2DRIVER$$aconferenceObject
000893782 3367_ $$2ORCID$$aCONFERENCE_POSTER
000893782 3367_ $$2DataCite$$aOutput Types/Conference Poster
000893782 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1628507579_31685$$xAfter Call
000893782 520__ $$aSequence learning, prediction and generation has been proposed to be the universal computation performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes this form of computation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a context-specific prediction of future sequence elements, and generates mismatch signals in case the predictions are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms. Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables and parameters. The model learns high-order sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow sequence-specific feedforward subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context-specific prediction of future sequence elementsas well as for the autonomous replay of previously learned sequences. By strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities.The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role ofsequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effectof the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.
000893782 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000893782 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000893782 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000893782 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x3
000893782 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b1
000893782 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b2
000893782 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b3
000893782 909CO $$ooai:juser.fz-juelich.de:893782$$pec_fundedresources$$pVDB$$popenaire
000893782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b0$$kFZJ
000893782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b1$$kFZJ
000893782 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b3$$kFZJ
000893782 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000893782 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000893782 9141_ $$y2021
000893782 920__ $$lyes
000893782 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000893782 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000893782 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000893782 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
000893782 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
000893782 980__ $$aposter
000893782 980__ $$aVDB
000893782 980__ $$aI:(DE-Juel1)INM-6-20090406
000893782 980__ $$aI:(DE-Juel1)IAS-6-20130828
000893782 980__ $$aI:(DE-Juel1)INM-10-20170113
000893782 980__ $$aI:(DE-Juel1)PGI-7-20110106
000893782 980__ $$aI:(DE-Juel1)PGI-10-20170113
000893782 980__ $$aUNRESTRICTED
000893782 981__ $$aI:(DE-Juel1)IAS-6-20130828