000893791 001__ 893791
000893791 005__ 20240709094412.0
000893791 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2021.04.026
000893791 0247_ $$2ISSN$$a0955-2219
000893791 0247_ $$2ISSN$$a1873-619X
000893791 0247_ $$2Handle$$a2128/28013
000893791 0247_ $$2WOS$$aWOS:000651864000003
000893791 037__ $$aFZJ-2021-02830
000893791 082__ $$a660
000893791 1001_ $$0P:(DE-Juel1)171373$$aYan, Gang$$b0$$eCorresponding author
000893791 245__ $$aFracture behavior of solid electrolyte LATP material based on micro-pillar splitting method
000893791 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000893791 3367_ $$2DRIVER$$aarticle
000893791 3367_ $$2DataCite$$aOutput Types/Journal article
000893791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625641181_17761
000893791 3367_ $$2BibTeX$$aARTICLE
000893791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893791 3367_ $$00$$2EndNote$$aJournal Article
000893791 520__ $$aThe NASICON type solid electrolyte LATP is a promising candidate for all-solid-state Li-ion batteries considering energy density and safety aspects. To ensure the performance and reliability of batteries, crack initiation and propagation within the electrolyte need to be suppressed, which requires knowledge of the fracture characteristics. In the current work, micro-pillar splitting was applied to determine the fracture toughness of LATP material for different grain orientations. The results are compared with data obtained using a conventional Vickers indentation fracture (VIF) approach. The fracture toughness obtained via micro-pillar splitting test is 0.89 ± 0.13 MPa∙m1/2, which is comparable to the VIF result, and grain orientation has no significant effect on the intrinsic fracture toughness. Being a brittle ceramic material, the effect of pre-existing defects on the toughness needs to be considered.
000893791 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000893791 588__ $$aDataset connected to DataCite
000893791 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1
000893791 7001_ $$0P:(DE-Juel1)172732$$aFu, Shuo$$b2$$ufzj
000893791 7001_ $$0P:(DE-Juel1)177993$$aGross, Jürgen Peter$$b3
000893791 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b4
000893791 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
000893791 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b6
000893791 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2021.04.026$$gVol. 41, no. 10, p. 5240 - 5247$$n10$$p5240 - 5247$$tJournal of the European Ceramic Society$$v41$$x0955-2219$$y2021
000893791 8564_ $$uhttps://juser.fz-juelich.de/record/893791/files/Fracture%20Behavior%20of%20Solid%20Electrolyte%20-%20Yan.pdf$$yPublished on 2021-08-01. Available in OpenAccess from 2023-08-01.
000893791 909CO $$ooai:juser.fz-juelich.de:893791$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171373$$aForschungszentrum Jülich$$b0$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172732$$aForschungszentrum Jülich$$b2$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177993$$aForschungszentrum Jülich$$b3$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b4$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000893791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b6$$kFZJ
000893791 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000893791 9141_ $$y2021
000893791 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893791 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2019$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000893791 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893791 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000893791 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000893791 9801_ $$aFullTexts
000893791 980__ $$ajournal
000893791 980__ $$aVDB
000893791 980__ $$aUNRESTRICTED
000893791 980__ $$aI:(DE-Juel1)IEK-2-20101013
000893791 980__ $$aI:(DE-Juel1)IEK-9-20110218
000893791 981__ $$aI:(DE-Juel1)IMD-1-20101013
000893791 981__ $$aI:(DE-Juel1)IET-1-20110218