001     893793
005     20240709094405.0
024 7 _ |a 10.1016/j.engfailanal.2021.105526
|2 doi
024 7 _ |a 1350-6307
|2 ISSN
024 7 _ |a 1873-1961
|2 ISSN
024 7 _ |a 2128/28040
|2 Handle
024 7 _ |a WOS:000691760600004
|2 WOS
037 _ _ |a FZJ-2021-02832
082 _ _ |a 600
100 1 _ |a Ebrahimzade, V.
|0 P:(DE-Juel1)165775
|b 0
|e Corresponding author
245 _ _ |a Failure mechanism and lifetime of various laser-drilled APS-TBC systems under LCF conditions
260 _ _ |a Oxford [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625729730_26589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Laser drilling is a highly efficient method to produce cooling holes in TBC systems. Low-Cycle Fatigue tests on APS TBC-coated nickel-based superalloy specimens were performed for undrilled and laser-drilled samples, using a long-pulsed and an ultra-short pulsed laser method at two different angles. The tests were conducted at 850 °C with two mechanical strain ranges of 0.38% and 0.67% to analyse the influence of the quality of the laser drilled holes on failure mechanism and lifetime. Ultra-short pulsed laser and inclined cooling holes showed longer life time compared to the other drilled variants.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Haasler, D.
|0 0000-0003-0373-6411
|b 1
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 2
773 _ _ |a 10.1016/j.engfailanal.2021.105526
|g Vol. 127, p. 105526 -
|0 PERI:(DE-600)2021082-6
|p 105526 -
|t Engineering failure analysis
|v 127
|y 2021
|x 1350-6307
856 4 _ |u https://juser.fz-juelich.de/record/893793/files/Failure%20Mechanism%20and%20Lifetime%20-%20Ebrahimzade.pdf
|y Published on 2021-08-01. Available in OpenAccess from 2023-08-01.
909 C O |o oai:juser.fz-juelich.de:893793
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129755
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENG FAIL ANAL : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21