000893794 001__ 893794
000893794 005__ 20240725202006.0
000893794 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2021.05.015
000893794 0247_ $$2ISSN$$a0955-2219
000893794 0247_ $$2ISSN$$a1873-619X
000893794 0247_ $$2Handle$$a2128/28101
000893794 0247_ $$2altmetric$$aaltmetric:105851955
000893794 0247_ $$2WOS$$aWOS:000661435900001
000893794 037__ $$aFZJ-2021-02833
000893794 082__ $$a660
000893794 1001_ $$0P:(DE-Juel1)177066$$aLi, Xiaoqiang$$b0$$eCorresponding author
000893794 245__ $$aA combined experimental and modeling study revealing the anisotropic mechanical response of Ti2AlN MAX phase
000893794 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000893794 3367_ $$2DRIVER$$aarticle
000893794 3367_ $$2DataCite$$aOutput Types/Journal article
000893794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884506_2788
000893794 3367_ $$2BibTeX$$aARTICLE
000893794 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893794 3367_ $$00$$2EndNote$$aJournal Article
000893794 520__ $$aTi2AlN MAX phase with a hexagonal crystal structure exhibits great potential as structural material for operation under harsh environments due to its excellent mechanical performance. For a reliable application, a comprehensive understanding of the mechanical behavior, and in particular of the anisotropic properties is needed. Thus, in this study, we combined nanoindentation and electron-backscatter diffraction experiments to correlate elastic modulus and hardness of Ti2AlN to the crystallographic orientation. We used two different modeling approaches to better understand, validate, and in the long run to predict the anisotropic mechanical behavior of MAX phase materials. While we observed consistent trends in both experiments and modeling, elastic modulus and hardness showed different dependencies on the crystal orientation.
000893794 536__ $$0G:(DE-HGF)POF4-1242$$a1242 - Concentrating Solar Power (CSP) (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000893794 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893794 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b1$$eCorresponding author
000893794 7001_ $$0P:(DE-Juel1)171373$$aYan, Gang$$b2
000893794 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000893794 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b4
000893794 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2021.05.015$$gVol. 41, no. 12, p. 5872 - 5881$$n12$$p5872 - 5881$$tJournal of the European Ceramic Society$$v41$$x0955-2219$$y2021
000893794 8564_ $$uhttps://juser.fz-juelich.de/record/893794/files/A%20Combined%20Experimental%20%20-%20Malzbender.pdf$$yPublished on 2021-05-12. Available in OpenAccess from 2022-05-12.
000893794 909CO $$ooai:juser.fz-juelich.de:893794$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000893794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177066$$aForschungszentrum Jülich$$b0$$kFZJ
000893794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000893794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171373$$aForschungszentrum Jülich$$b2$$kFZJ
000893794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000893794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b4$$kFZJ
000893794 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1242$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000893794 9141_ $$y2021
000893794 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000893794 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000893794 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893794 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2019$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000893794 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893794 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893794 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000893794 980__ $$ajournal
000893794 980__ $$aVDB
000893794 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893794 980__ $$aI:(DE-Juel1)IEK-2-20101013
000893794 980__ $$aUNRESTRICTED
000893794 9801_ $$aFullTexts
000893794 981__ $$aI:(DE-Juel1)IMD-1-20101013
000893794 981__ $$aI:(DE-Juel1)IMD-2-20101013