000893795 001__ 893795
000893795 005__ 20240711085627.0
000893795 0247_ $$2doi$$a10.3390/ma14133632
000893795 0247_ $$2Handle$$a2128/28024
000893795 0247_ $$2altmetric$$aaltmetric:108365092
000893795 0247_ $$2pmid$$a34209721
000893795 0247_ $$2WOS$$aWOS:000671280800001
000893795 037__ $$aFZJ-2021-02834
000893795 082__ $$a600
000893795 1001_ $$0P:(DE-Juel1)176279$$aBadie, Sylvain$$b0$$eCorresponding author$$ufzj
000893795 245__ $$aInjection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites
000893795 260__ $$aBasel$$bMDPI$$c2021
000893795 3367_ $$2DRIVER$$aarticle
000893795 3367_ $$2DataCite$$aOutput Types/Journal article
000893795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625651951_13142
000893795 3367_ $$2BibTeX$$aARTICLE
000893795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893795 3367_ $$00$$2EndNote$$aJournal Article
000893795 520__ $$aNear-net shape components composed of monolithic Ti2AlC and composites thereof, containing up to 20 vol.% Al2O3 fibers, were fabricated by powder injection molding. Fibers were homogeneously dispersed and preferentially oriented, due to flow constriction and shear-induced velocity gradients. After a two-stage debinding procedure, the injection-molded parts were sintered by pressureless sintering at 1250 °C and 1400 °C under argon, leading to relative densities of up to 70% and 92%, respectively. In order to achieve near-complete densification, field assisted sintering technology/spark plasma sintering in a graphite powder bed was used, yielding final relative densities of up to 98.6% and 97.2% for monolithic and composite parts, respectively. While the monolithic parts shrank isotropically, composite assemblies underwent anisotropic densification due to constrained sintering, on account of the ceramic fibers and their specific orientation. No significant increase, either in hardness or in toughness, upon the incorporation of Al2O3 fibers was observed. The 20 vol.% Al2O3 fiber-reinforced specimen accommodated deformation by producing neat and well-defined pyramidal indents at every load up to a 30 kgf (~294 N).
000893795 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000893795 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893795 7001_ $$0P:(DE-Juel1)180482$$aGabriel, Rimy$$b1$$ufzj
000893795 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
000893795 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b3
000893795 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000893795 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b5
000893795 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma14133632$$gVol. 14, no. 13, p. 3632 -$$n13$$p3632 -$$tMaterials$$v14$$x1996-1944$$y2021
000893795 8564_ $$uhttps://juser.fz-juelich.de/record/893795/files/materials-14-03632-v2.pdf$$yOpenAccess
000893795 909CO $$ooai:juser.fz-juelich.de:893795$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176279$$aForschungszentrum Jülich$$b0$$kFZJ
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180482$$aForschungszentrum Jülich$$b1$$kFZJ
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b2$$kFZJ
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000893795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b5$$kFZJ
000893795 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000893795 9141_ $$y2021
000893795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000893795 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893795 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2019$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893795 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000893795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893795 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893795 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000893795 9801_ $$aFullTexts
000893795 980__ $$ajournal
000893795 980__ $$aVDB
000893795 980__ $$aUNRESTRICTED
000893795 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893795 980__ $$aI:(DE-82)080011_20140620
000893795 981__ $$aI:(DE-Juel1)IMD-2-20101013