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The anomalous Hall effect has been indispensable in our understanding of numerous mag-

netic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of

antiferromagnets, where in addition to the anomalous and recently discovered crystal Hall

effect, the topological Hall effect in noncoplanar antiferromagnets has been a subject of

intensive research in the past decades. Here, we uncover a distinct flavor of the Hall effect

emerging in generic canted spin systems. We demonstrate that upon canting, the anomalous

Hall effect acquires a contribution which is sensitive to the sense of imprinted vector chirality

among spins. We explore the origins and basic properties of corresponding chiral Hall effect,

and closely tie it to the symmetry properties of the system. Our findings suggest that the

chiral Hall effect and corresponding chiral magneto-optical effects emerge as useful tools in

characterizing an interplay of structure and chirality in complex magnets, as well as in

tracking their chiral dynamics and fluctuations.
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In the past two decades the anomalous Hall effect (AHE) – one
of the oldest known manifestations of magnetism in solids –
has acquired a major role in testing various new paradigms

and phenomena in condensed matter physics1. These include, but
are not limited to, the issues related to generation and manip-
ulation of spin currents2, current-induced torques on the
magnetization3–5, electrical detection of topological phases of
matter6, and the emergence of noncollinear spin states7. While
originally explored in ferromagnetic (FM) materials, the AHE has
come to occupy a special place in the realm of antiferromagnets
(AFMs) as well8,9. While it is well-known that in noncoplanar
AFMs the AHE can arise even without spin-orbit interaction, the
AHE emerging in collinear AFMs has been recently
discovered10,11, where the latter crystal Hall effect originates in
the breaking of symmetry brought by the nonmagnetic cage of
atoms via structural chirality10,12,13.

The direct relation of the AHE to the geometry and topology of
electronic states lends a way to utilizing the AHE as a probe for
emergence of various Berry phase properties, which has become
one of the major areas of research in the past years. Here, the
AHE is traditionally associated with the reciprocal k-space Berry
phase of Bloch electrons14, while its relation to the real-space
Berry phases of electrons in winding spin structures is reflected in
celebrated topological Hall effect of systems which exhibit non-
vanishing scalar spin chirality Si⋅(Sj × Sk) among neighboring
triplets of spins, such as skyrmions15. Recently it has been shown
that the k-space and real-space Berry phases are closely linked
together in giving rise to the so-called chiral Hall effect of spin
textures15. In contrast to the AHE in ferromagnets and topolo-
gical Hall effect of skyrmions, the chiral Hall effect is sensitive to
the sense of smooth rotation, or, chirality, of the magnetization in
e.g., chiral domain walls15. On the other hand, recent studies
show that the effect of spin canting on the electronic structure
and the AHE in collinear antiferromagnets can be
significant16–19.

In this work we demonstrate the emergence of a distinct flavor
of the AHE, which can be prominent both in ferromagnets and
antiferromagnets. We show that it arises in diverse magnetic
systems upon imprinting the vector chirality Si × Sj among pairs
of neighboring spins by canting driven by external fields or
thermal fluctuations. We demonstrate that, similarly to its twin in
the world of smooth textures, the chiral Hall effect is sensitive to
the sense of vector chirality exhibited by pairs of frustrated spins.
We theoretically investigate the properties of this phenomenon,
show that it can be significant in diverse classes of materials, and
demonstrate its clear distinction from the conventional anom-
alous and topological Hall effects by showing that it has a pro-
foundly different Berry phase origin. Importantly, we argue that
the inclusion of chiral Hall effect into the palette of complex
phenomena exhibited by ferromagnets and antiferromagnets is
indispensable for providing a unified categorization of the Hall
effects – which is a prerogative for a conclusive read-out of crystal
structure, magnetic order, and dynamics exhibited by complex
magnets.

Results
In this work, we consider the effect of finite vector chirality on the
AHE of initially collinear ferro- and antiferromagnetic two-
dimensional (2D) systems, which is induced by small canting
away from the initial configuration of spins, see (Fig. 1). We
concentrate specifically on the case of crystals which comprise
two spins in the unit cell, such as a honeycomb lattice of magnetic
atoms, and discuss how our findings can be generalized to the
case of several magnetic atom types. Given the original collinear
arrangement of spins on sites A and B, sA and sB, along a certain

axis ŝ0, we define a plane which contains this axis as well as spins
canted with respect to ŝ0 by an angle +θ (for sA) and −θ (for sB).
With this definition, the reversal of sign in the canting angle θ→
−θ provides a state of opposite chirality χ, which we define as χ=
sA × sB, with χ ¼ j sin θj, where we assume that the length of the
spins does not change upon canting, see (Fig. 1a, b). In the
presence of spin-orbit interaction (SOI) and upon breaking of
certain crystalline symmetries, such as inversion symmetry, which
is naturally broken upon depositing the 2D magnetic lattice on a
surface, the electronic structure of the system with positive
chirality can be different from that with negative chirality.

The canting-driven modifications in the electronic structure
inevitably result in the modifications brought to the AHE of the
system. This aspect presents the focus of our work. In the case of
a 2D system considered here, only the xy-component of the
conductivity tensor which we denote as σxy encodes the infor-
mation about the magnitude of the AHE. We consider only the
intrinsic part of the AHE as given by the k-dependent Berry
curvature of the occupied states ΩxyðkÞ ¼
∑n2occ2=h∂kxunkj∂kyunki where the sum runs over occupied states
at point k and unk is the lattice-periodic Bloch state n. The
anomalous Hall conductivity (AHC) is given by the Brillouin
zone (BZ) integral σxy= ∫BZΩxy(k) dk (see more details in the
section Methods). In order to track the changes in σxy with
respect to canting as given by the angle θ, we introduce two key
quantities – the symmetric (σsxy) and antisymmetric (σaxy) parts of
the AHC – defined as follows:

σsðaÞxy ðθÞ ¼ σxyðθÞ± σxyð�θÞ
2

¼
Z

BZ
ΩsðaÞ

xy ðθ; kÞ dk; ð1Þ

where the symmetric and antisymmetric parts of the Berry cur-
vature are determined at each k-point as

ΩsðaÞ
xy ðθ; kÞ ¼ Ωxyðθ; kÞ±Ωxyð�θ; kÞ

h i
=2. The latter dependence

of Ωxy on θ arises in response to the dependence of electronic
states, whose geometry the Berry curvature measures, on canting.

According to its definition, the symmetric AHC has the same
value for the states of opposite chirality, i.e., it is θ-even:
σsxyðθÞ ¼ σsxyð�θÞ, see (Fig. 1d). Since at zero canting the sym-
metric AHC is given by the AHC of the collinear system,
σsxyðθ ¼ 0Þ ¼ σxyðθ ¼ 0Þ ¼ σ0xy , we will refer to this part of the
AHC as the crystal Hall conductivity, as for collinear AFMs it
would correspond to the situation of crystal Hall effect20. In
collinear FMs this would correspond to the conventional defini-
tion of the “ferromagnetic” AHE. On the other hand, the anti-
symmetric AHC changes sign when θ→−θ, i.e., it is θ-odd:
σaxyðθÞ ¼ �σaxyð�θÞ, see (Fig. 1c), and it vanishes for the collinear
configuration. Since this part of the AHC is sensitive to the sense
of chirality χ, we refer to it as the chiral Hall conductivity. This
name is further motivated by the fact that the chirality-sensitive
Hall effect has been recently discovered in systems where a finite
chirality is imprinted by smooth spiral-like deformations of the
spin texture15. The chiral Hall effect discussed here presents a
version of the latter phenomenon where a specific sense of
chirality is generated by lattice-periodic short-wavelength defor-
mations of the spin structure.

By definition, both effects – the crystal Hall and chiral Hall
effects – when added together, provide the total AHC of the
system: σsxyðθÞ þ σaxyðθÞ ¼ σxyðθÞ. However, while the crystal Hall
effect picks up even powers of θ in the Taylor expansion of σxy(θ)
around the collinear state, σsxyðθÞ ¼ σ0xy þ aθ2 þ :::, the chiral
Hall effect accumulates odd terms in the latter expansion,
σaxyðθÞ ¼ bθ þ cθ3 þ :::, where coefficients a, b and c depend on
the electronic structure in the collinear state. This tells us, that in
the limit of small canting (i.e., to the first order in θ) the
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deviations of σxy from σ0xy are manifestly chiral in nature. Cor-
respondingly, understanding the properties of the chiral Hall
effect is of utter importance for understanding the behavior of the
AHE in collinear magnets where the spins are canted either as a
result of external electric and magnetic fields, chemical or
structural tuning of exchange interactions, and thermal
fluctuations.

Model considerations. We start by considering the existence and
properties of the chiral Hall effect on a bi-partite honeycomb
lattice of magnetic spins. The effective lattice tight-binding
Hamiltonian reads:

H ¼ �t ∑
hijiα

cyiαcjα þ iαR ∑
hijiαβ

êz � ðσ ´ dijÞαβ cyiαcjβ

þ λex ∑
iαβ

ð̂si � σÞαβ cyiαciβ;
ð2Þ

where cyiα (ciα) denotes the creation (annihilation) of an electron
with spin α at site i, 〈…〉 restricts the sums to nearest neighbors,
the unit vector dij points from j to i, and σ stands for the vector of
Pauli matrices. Besides the hopping with amplitude t, Eq. (2)
contains the Rashba spin-orbit coupling of strength αR originat-
ing for example in the surface potential gradient. The remaining
term in Eq. (2) is the local exchange term with λex characterizing
the strength of exchange splitting and ŝi stands for the direction
of spin on site i.

Here, we work with the following parameters of the model: t=
1.0 eV, αR= 0.4 eV, and λex= 1.4 eV. We start with the initial
direction of atomic spins along a given direction ŝ0 characterized
with polar angles ŝ0 ¼ ðθ0;φ0Þ, see (Fig. 2a), with ŝA and ŝB along
ŝ0 for a FM, and with ŝA ¼ �ŝB ¼ ŝ0 in case of an AFM
configuration. Following the symmetry analysis (see Supplemen-
tary Note 1), we consider the canting plane which is orthogonal to
the xy-plane and which contains ŝ0. Within this plane, the
azimuthal angle of all spins is constant and the canting is

characterized by an angle ±θ away from ŝ0 for ŝA=B. A change of
sign of θ corresponds to switching the sign of the chirality among
ŝA and ŝB, (Fig. 2a).

Before proceeding with the analysis of the AHE, we inspect the
influence of chirality on the band structure of the model. To do
this, we choose the initial collinear direction of the spins along
ŝ0 ¼ ð100�; 10�Þ, which breaks all symmetries in the system. The
bandstructures of the FM and AFM configurations for the
collinear as well as canted by ±10∘ cases are shown in Fig. 2b and
c, respectively. The band structure for the FM case for ŝ0 ¼
ð90�; 0�Þ is known to be gapped at half-filling, where the gap of
the system is topologically nontrivial21. Clearly, canting-driven
band dynamics is different for two opposite chiralities, and
respective band shifts sensitively depend on the structural
properties. They can be further separated into contributions
which are even and odd in the Rashba strength. Among these, the
ones odd in αR, i.e., sensitive to the sense of structural chirality,
are closely related to the emergence of Dzyaloshinskii-Moriya
interaction among spins sA and sB22–24.

In the FM case, the chiral band shifts observed in (Fig. 2) are
directly related to the sense of inversion symmetry breaking via
the Rashba term in Eq. (2) and corresponding structural chirality:
upon changing the sign of αR→−αR in the Hamiltonian, the
bands of the configurations with opposite chirality simply
exchange their energetic position. The latter effect can be also
understood based on an effective gauge theory, applied recently to
the study of orbital magnetism in chiral spin systems25, where the
effect of canting and generally vector chirality was shown to be
equivalent to an effect of a fictitious chiral magnetic field Beff

R � χ,
applied to a collinear FM system. Within the interfacial Rashba
model it can be shown analytically that Beff

R � αR, implying that
Beff
R changes sign when the sense of inversion symmetry breaking

is reversed. Consequently, the corresponding band shifts of the
ferromagnetic electronic states of Hamiltonian (2), a lattice
realization of the interfacial Rashba model, change sign.

Fig. 1 Sketch of the definition of crystal Hall and chiral Hall effects in canted ferromagnets and antiferromagnets. Once collinear ferromagnetic or
antiferromagnetic order (light yellow arrows in a and b) is broken by canting with positive (+θ, red arrows) or negative (−θ, blue arrows) sense of vector
chirality, the modifications in the electronic structure result in the modifications of the anomalous Hall conductivity (AHC), σxy(θ). The AHC can be
decomposed into the crystal Hall (symmetric, θ-even) part, σsxy ¼ σxyðþθÞ þ σxyð�θÞ� �

=2, (d), and the chiral Hall (antisymmetric, θ-odd) part
σaxy ¼ σxyðþθÞ � σxyð�θÞ� �

=2, (c). In c and d the red and blue arrows correspond to the direction of the Hall current for positive and negative chirality in an
applied electric field E.
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In ferromagnets with broken inversion symmetry the emer-
gence of nonvanishing chiral magnetic field generated by chiral
spin canting goes hand in hand with the rise of the linear-in-
chirality contribution to the Hall effect – the chiral Hall effect.
Our analysis clearly reveals that the chiral Hall effect is a general
effect appearing not only in smooth textures15 but also in the
context of canted FMs. In (Fig. 2d) we show explicit calculations
of σxy (for +θ and −θ with θ= 10∘), σsxy and σaxy for ŝ0 ¼
ð100�; 10�Þ as a function of band filling of the model. We observe
that significant dependence of the band structure on the chirality
results in a noticeable influence of chirality on the AHC mainly
close to half-filling. The symmetric in chirality σsxy largely follows
the behavior of σ0xy in the whole range of energies, while the
behavior of the σaxy is correlated with fine canting-driven band
dynamics reflected in a complex distribution of the antisymmetric
Berry curvature in k-space, shown in (Fig. 2g) for the lowest two
bands. And while the latter distribution does not vanish k-point-
wise for any direction of s0 except for the case when
θ ¼ nπ; n 2 Z, the overall BZ integral of the antisymmetric
Berry curvature vanishes owing to mirror symmetry for high-
symmetry directions of s0 with φ= nπ/3, see e.g., Fig. 2f.

The pronounced chiral Hall effect of the FM model at half-
filling is closely related to the topological phase transition
occurring for ŝ0 ¼ ð90�; 0�Þ. Here, as the direction of the collinear

magnetization passes through (xy)-plane, the quantized Hall
conductance of the system changes by 2 e2

h in response to the
change in the chirality of the Chern insulating state. This
topological phase transition is the consequence of the presence of
a so-called mixed Weyl point in the electronic structure at EF= 0
eV for the in-plane magnetization26, the Berry phase nature of
which we discuss later. Correspondingly, energy-resolved calcula-
tions of the chiral Hall conductivity as a function of the angle θ0,
presented in (Fig. 3a), reveal a pronounced and very complex
structure of σaxy next to the mixed Weyl point, which stands in
contrast to a relatively smooth behavior of σsxy in (θ0, EF)-space
(not shown). On the other hand, the chiral Hall effect exhibits a
much stronger response to the canting angle θ, as compared to
σsxy : as shown in (Fig. 3b) for the case of half-filling, while σsxy
changes by about 0.05 e2/h for the canting angle of up to 10∘, in
the same range of θ the corresponding change of σaxy is larger by
an order of magnitude. In accordance to arguments from above,
the general trend of σaxy and σsxy with θ is linear and quadratic,
respectively, when the canting angle is sufficiently small.

In contrast to a ferromagnet, for the antiferromagnetic case the
magnitudes of the crystal and chiral Hall effects are large and
comparable, but they manifest in different energy regions, see
(Fig. 2e). The AFM case presents another example of a correlation

Fig. 2 The emergence of chiral and crystal Hall effect of ferro- and antiferromagnets on a honeycomb lattice. a The definition of the angles used to
characterize the canted spin structure of spins sA and sB. The initial direction of collinear magnetization ŝ0 ¼ ðθ0;φ0Þ with polar angle θ0 and azimuthal
angle φ0 is kept constant during canting, ŝ0 � sA þ sB. The spins are canted in the plane of constant φ0 by an angle θ for sA and −θ for sB with respect to
ŝ0. The changes in the bandstructure of the ferromagnetic (FM) (b) and antiferromagnetic (AFM) (c) spins initially along ŝ0 ¼ ð100�; 10�Þ upon canting by
±10∘. The thin gray line with circles marks the initial bandstucture while blue and red lines mark the bandstructure for θ= 10∘ and θ=−10∘, respectively.
The corresponding anomalous Hall conductivity (AHC), σxy, as a function of the Fermi energy is shown for the FM (d) and AFM (e) cases for positive (solid
blue line) and negative (dashed red line) canting. The symmetric, σsxy , and antisymmetric, σaxy , parts of the AHC are shown with dark orange and dark blue
lines. All values are in e2/h, where e is the elementary charge and h is Planck’s constant. f–k While for the high-symmetry direction of ŝ0 ¼ ð100�;0�Þ the
symmetry properties of the Berry curvature of the first two bands in the FM case, Ωa(10∘, k), lead to vanishing overall chiral Hall effect (f), the breaking of
symmetry for ŝ0 ¼ ð100�; 10�Þ results in a net effect (g). The complex structure of Ωa(10∘, k) of the first band from (c) in k-space, (h), is clearly correlated
with the separation between the first and second bands in energy, shown in k.
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between the antisymmetric Berry curvature and the electronic
structure: as visible in (Fig. 2h, k) the emergence of strong
features in the Berry curvature of the first band of the model is
consistent with the first and second band coming close to each
other in energy at specific points in the BZ. In analogy to
ferromagnets, this gives rise to monopoles of special type which
manifest in an enhanced antisymmetric Berry curvature, as
discussed below. In analogy to the FM case considered above, the
scaling of the chiral Hall effect with the canting angle can be
confirmed to be linear for small θ, see e.g., the inset of (Fig. 3b).

Overall, as we have shown above by explicit calculations, the
flavor of the Hall effect linear in spin chirality – the chiral Hall
effect – exists and can be prominent both in FMs and AFMs. In
the next two sections we uncover the nature of the chiral Hall
effect as a phenomenon which can be clearly distinguished from
the “conventional” AHE, associated with the change in the overall
magnetization of the system. For FMs, the conceptual difference
between the two is very clear, as both of the canted states, used to
arrive at the chiral Hall effect, (Fig. 3a), share the same overall
magnetization. How to draw the distinction for AFMs is less
obvious, as the change in chirality in (Fig. 3b) is associated with
the change in sign and magnitude of the overall "ferromagnetic"
magnetization arising upon canting. Below, we formalize the

classification of chiral and crystal Hall effects consistently in
canted ferro- and antiferromagnets, referring to symmetry
arguments.

Symmetry analysis. The magnetic order is fully characterized by
the staggered field n− and the ferromagnetic field n+ which are
defined according to n±= sA ± sB. The Hall conductivity can thus
be decomposed into terms which are even and odd with respect
to the interchange of n̂� ! �n̂�, i.e.,

σxyðnþ;n�Þ ¼ σoddxy ðnþ;n�Þ þ σevenxy ðnþ;n�Þ: ð3Þ
The off-diagonal components of the conductivity as they arise
from the Berry curvature can be interpreted as the components of
an axial vector which is odd under time-reversal. Each of these
terms can thus be further expanded as a sum over all terms which
are odd under magnetization reversal:

σoddxy ¼ ∑
1

k;l¼0
ðcoddxy Þi : ðn�2kþ1

� � n�2l
þ Þi ð4Þ

σevenxy ¼ ∑
1

k;l¼0
ðcevenxy Þi : ðn�2k

� � n�2lþ1
þ Þi; ð5Þ

where : denotes the tensor contraction over the multi-index i=
(i1,…, i2(k+l)+1) (we refer to the Supplemental Note 1 for an
explicit example). This decomposition into odd and even parts
also corresponds to the parity under magnetic sublattice inter-
change, which would leave n̂þ invariant. Therefore, the symmetry
requirements for these two tensors are quite different. In order for
σevenxy to be finite, the crystal symmetry needs to support axial
tensors of odd order.

In particular, the effect is then even under lattice inversion and
in our model it is thus necessarily even in the spin-orbit coupling
strength αR. The case is different for σoddxy , whose tensorial
components above either transform axial or polar depending on
whether or not the symmetry under consideration interchanges
the lattice sites: since PsA/B= sB/A for the inversion operation P,
the staggered magnetization would behave polar for our lattice,
i.e., Pn−=−n−, and not axial as n+. For small values of the spin-
orbit strength, σoddxy is therefore linear in αR (generally odd in αR),
which is a corollary to the general fact that polar tensors of odd
rank are identically zero in centrosymmetric crystal structures,
see Table 1.

While the general expansion in Eqs. (4) and (5) is in principle
complete, a formulation in terms of the chirality χ offers a deeper
insight into the various effects which can appear in ferro- and
antiferromagnets. Based on the definitions above the chirality

Fig. 3 Properties of the chiral Hall effect. a Behavior of the antisymmetric
part of the anomalous Hall conductivity σaxy at 10° canting as a function of
Fermi energy and direction of collinear ferromagnetic magnetization s0=
(θ0, 10°). While the fine structure of the chiral Hall effect correlates with
the band structure dynamics in response to canting and rotation of the
initial magnetization, the origin of the effect in the Weyl point at half filling
for θ0= 90°, serving as a source of staggered mixed Berry curvature, is
visible. b The scaling of the crystal (orange line) and chiral (violet line)
Hall effects with the canting angle θ at half-filling of the ferromagnetic case
s0= (100°, 10°). The inset displays the scaling of the chiral Hall effect with
θ for Fermi energy EF=−1.5 eV in the antiferromagnetic case with the
same s0.

Table 1 Unified categorization of various Hall effects taking
place in canted ferromagnets (FM) and antiferromagnets
(AFM) as a function of ferromagnetic/staggered
magnetization n̂þ=� and structural chirality χ. Here, αFMi and

βFMij are expansion coefficients, depending on whether the
reference state is FM or AFM. The leading order is linear or
quadratic in the Rashba spin-orbit interaction parameter αR.

sA↔ sB Canted ferromagnet Canted antiferromagnet

Chiral Hall effect Crystal Hall effect
σoddxy αFMi ðn̂þÞχi αAFMij ðn̂�Þχ iχj

� αR � αR
Crystal Hall effect Chiral Hall effect

σevenxy βFMij ðn̂þÞχiχ j βAFMi ðn̂�Þχ i
� α2R � α2R
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itself can be reinterpreted as

χ ¼ sA ´ sB ¼ 1
2
ðn� ´nþÞ; ð6Þ

which is therefore odd in both n− and n+, but even under time-
reversal. Since n+⋅n−= 0, one has χ × n±=∓ ∥n±∥2n∓/2. Hence,
the leading order terms in the expansion of σoddxy and σevenxy can be
written in two equivalent ways by either replacing all appearing
n− or n+ factors in terms of chirality, i.e.,

σoddxy � ∑
i
αFMi ðn̂þÞχi ¼ ∑

ij
αAFMij ðn̂�Þχiχj ð7Þ

σevenxy � ∑
i
βAFMi ðn̂�Þχi ¼ ∑

ij
βFMij ðn̂þÞχiχj; ð8Þ

where αFMi , αAFMij and βFMi , βAFMij are odd under time-reversal. The
choice of α and β coefficients is a matter of philosophy. In a
weakly canted ferromagnet, for example, it makes sense to
formulate the change in conductivity as response to the χ where
the coefficients depend only on the electronic structure of the
unperturbed, collinear system, which is solely determined by n̂þ.
For a weakly canted antiferromagnet, it makes sense to do the
opposite. This situation is summarized in Table 1.

The chiral Hall effect can be now understood as the effect
which accumulates all terms containing an odd number of χi
relative to their collinear reference state. To lowest order, these
are therefore linear in χi and hence chiral. This definition
corresponds exactly to the way the chiral Hall effect has been
defined at the beginning and it corresponds also to the diagonal
terms in Table 1. In particular, as we show in the Supplemental
Note 1, the “topological” terms of the type n̂þ � χ do not appear in
the expansions of the conductivities above explicitly, which allows
to draw a strict line between the chiral Hall effect, and the
topological Hall effect rooted in the scalar spin chirality. On the
other hand, the crystal Hall effect can be identified with those
terms which are even in χi when formulated with respect to the
collinear reference state. For the canted antiferromagnet, this
corresponds to the definition given in ref. 10, which we extend
here to the case of canted ferromagnets. The lowest order
introduced by the canting is thus bichiral, i.e., it is quadratic in χi.
This corresponds to off-diagonal terms in Table 1, which thus
provides complete characterization of flavors of the Hall effect in
terms of chirality of the spin structure.

Note that the expansion of σevenxy in Eq. (5) also contains the
contribution from the usual anomalous Hall effect, which is the
lowest order term proportional to the magnetization n̂þ. The
chiral Hall effect in AFMs and the crystal Hall effect in FMs,
while being formally proportional to n̂þ, are different from the
conventional AHE contribution as their structure is generally
more complex, and the corresponding coefficients in the
expansion (5) depend on the electronic structure in a different
way than the usual AHE coefficient. This is directly reflected in
the different Berry phase nature of the two classes of phenomena.
Below, we provide the geometrical theory of the chiral Hall effect,
which marks it as a playground for exploring novel types of Berry
phases, not accessible in the realm of AHE of collinear magnets.

Berry phase picture of chiral Hall effect. We show that the chiral
Hall effect allows for an elegant interpretation in geometrical
terms which relate the geometry of Bloch electronic states in k-
space with the geometry associated with spin rotations. To do
this, we consider a perturbation of the system which is char-
acterized by a parameter λ(θ) corresponding to staggered infini-
tesimal rotation of spins on two sublattices by an angle θ around a
fixed direction, as defined before. This type of perturbation is
distinctly different from that associated with a variation of the

total magnetization of a collinear FM system, related to the
change in the exchange coupling strength, when treated on the
model level.

We look at the evolution of the k-space Berry curvature Ωxy

with λ, which is ultimately related to the change in the AHC of
the system. Namely, we single out the linear in λ term by looking
at the quantity δΩxy ¼ limλ!0 ∂λΩxy , which stands for the
magnitude of the response of chiral Hall conductivity to
infinitesimal canting, i.e., Ωa

xy � jθj � δΩxy . Using perturbation
theory arguments, it can be shown that at zero temperature
(omitting the Fermi surface contribution)

δΩxy ¼ = trocc ½Ωxy;Aλ� þ ½Qλx;Ay� þ ½Ωyλ;Ax�
� �

=2; ð9Þ

antisymmetrized with respect to (x↔ y) interchange of indices,
where Aα ¼ ihunj∂αumi with α= {kx, ky, λ} are the components of
the Berry connection, Qαβ ¼ ∂αAβ þ ∂βAα is the quantity related
to the quantum metric tensor27, and Ωxλ ¼ 2=h∂kxunj∂λumi is the
mixed component of the Berry curvature tensor. The details on
the derivation can be found in Supplemental Note 2.

The appearance in Eq. (9) of the mixed Berry curvature, which
couples the changes in the electronic states with respect to the
Bloch vector to their variation in response to chiral θ-canting, is
worth noting. We refer to this type of Berry curvature as the
staggered mixed Berry curvature, to distinguish it from the type of
the mixed Berry curvature which was introduced in the past for
the situation where λ represents an infinitesimal rotation of the
same sense on both atoms, and which corresponds to a coherent
rotation of the ferromagnetic or staggered antiferromagnetic
magnetization in collinear FMs and AFMs. The latter type of the
Berry curvature was shown to be directly related to the anti-
damping spin-orbit torque that an electric field exerts on the
collinear magnetization21,26,28. The staggered mixed Berry
curvature is thus directly related to the staggered spin-orbit
torque, able to drive canting in collinear systems, which we
discuss at a later point. In fact, Eq. (9) is valid for the type of
perturbation which corresponds to a coherent rotation as well,
which fundamentally relates the spin-orbit torque to the linear in
θ anisotropy of the anomalous Hall conductivity of the collinear
system.

The uncovered relation between the anomalous Hall effect and
chiral Hall effect with the mixed and staggered mixed Berry
curvature, respectively, is not too surprising. This is easiest
understood by referring to the magnetic graphene model studied
here. For a collinear case, this model exhibits a band degeneracy
of the mixed Weyl type26 for the in-plane direction of the
magnetization, whose nonzero topological charge is determined
by integrating the Berry curvature vector field, constructed out of
k-space and mixed components of the Berry curvature tensor,
around it. The two types of Berry curvature in the vicinity of the
mixed Weyl point thus become intertwined with each other by
nontrivial topology of the mixed Weyl point. The fundamental
relation (9) is the formal generalization of this rationale to the
situation of a general driving parameter λ. For our FM model, the
pronounced chiral Hall effect in the vicinity of the in-plane
magnetization (Fig. 3a), which underlines the staggered mixed
nature of the band degeneracy, goes hand in hand with large
variation of the collinear AHE and large mixed Berry curvature
around the degeneracy point, found in the past26. The emergence
of such staggered mixed Weyl points in the electronic structure
correspondingly results in a large response of the AHE to canting,
found for instance in refs. 16,17,19, large response in terms for the
so-called chiral orbital magnetization15,25, and a large chiral Hall
effect, in accordance to our calculations.
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Chiral Hall effect in Mn2Au. To demonstrate the close relation
of the chiral Hall effect to the staggered mixed Berry curvature,
we consider an example of Mn2Au. We investigate the AFM
phase of this material with the spins on two Mn sublattices (A
and B) aligned along the z-axis, see Fig. 4a, and compute its
electronic structure and transport properties by referring to ab-
initio methods. The crystal structure of Mn2Au possesses global
inversion symmetry which prohibits the emergence of the crystal
Hall effect, in accordance to the symmetry analysis presented
above. The collinear AFM state of this system has PT-symmetry

which results in degeneracy of the bands for collinear spin con-
figuration (black dashed lines in Fig. 4c).

To simulate the effect of canting, we apply an exchange field of
various magnitude along y, acting on the set of ab-initio Wannier
states. This results in canting of spins on two sublattices in the zy-
plane, Fig. 4a. The magnitude of the exchange field of ±100 meV
corresponds to about ±2∘ of canting away from the z-axis. Finite
spin canting and corresponding finite chirality break the PT-
symmetry, which results in lifting of band degeneracies at each k-
point in the Brillouin zone, as exemplified for the case of +2∘

canting in Fig. 4c. Upon canting, each of the split bands acquires
a finite k-space Berry curvature Ωn

zxðkÞ ¼ 2=h∂kz unkj∂kxunki,
Fig. 4c, which is purely antisymmetric in nature: i.e., upon
canting of the opposite sense, while the band structure remains
intact, Ωn

zxðkÞ retains its magnitude but switches its sign. This
means, that in case of Mn2Au, the Hall conductivity, obtained by
summing up positive and negative Berry curvature contributions
over all bands, Fig. 4c, is manifestly chiral in that it switches sign
with changing the sense of canting. The corresponding computed
chiral Hall conductivity, shown as a function of band filling and
strength of canting in Fig. 4b, displays a complex structure with
pronounced peaks and sizable magnitude.

To clearly reveal the geometric origin of the chiral Hall effect in
Mn2Au along the lines of Berry phase theory presented above, we
calculate the band-resolved contributions to the staggered mixed
Berry curvature Ωn

λxðkÞ ¼ 2=h∂kxunj∂λuni, where λ corresponds
to staggered canting by angle θ of the spins on two sublattices in
zx-plane. At each k-point, the Berry curvature Ωn

λxðkÞ, calculated
in the collinear AFM state and shown in Fig. 4d, has identical
values for the pairs of PT-symmetric bands, which is in contrast
to the mixed Berry curvature corresponding to the coherent
rotation of spins: as result of PT symmetry the mixed Berry
curvature and corresponding damping-like spin-orbit torque
vanish when summed up over pair of PT-symmetric bands26,29,30.
As a result, while the nonstaggered damping-like torques are
inactive in PT-symmetric AFMs such as Mn2Au, the staggered
damping-like torques31,32, for each state proportional to Ωn

λxðkÞ
but acting in an opposite way on spins in A and B sublattices, are
allowed and can be prominent (see also Discussion section).

By comparing Fig. 4c and d, we observe a very close correlation
between the chiral Hall effect and the staggered mixed Berry
curvature. We thus numerically solidify the outcome of Eq. (9),
which states that large contributions in Ωn

λx reflect directly on the
magnitude of the chiral Hall conductivity. This correlation is
particularly prominent in the vicinity of near degeneracies among
the bands where large contributions to the staggered Berry
curvature and chiral Hall conductivity arise. While such
degeneracies in Mn2Au often carry an isolated monopole
character, such as e.g., at +1.7 eV around X or at +1.4 eV along
ΓM, they also occur along “hot” sheets of whole bands coming
close to each other33, as is the case for example along AZ, Fig. 4d.
The finding of the relation between the chiral Hall effect and
staggered mixed Berry curvature – and thus staggered damping-
like spin-orbit torque – is important as it provides a guiding
principle in the material design of both phenomena, and allows to
relate the observations of the Hall signal to the physics of spin-
orbit torques and vice versa.

Chiral Hall effect in SrRuO3. We now move on to a specific
material example which, upon doping, hosts pronounced crystal
and chiral Hall effects at the same time. Namely, we consider a
monolayer of SrO-terminated SrRuO3 (SRO) thin films grown on
SrTiO3, comprising two Ru spin moments which are arranged
antiferromagnetically in the collinear ground state12,34–37, with ŝ0
along the x-axis in the plane of the film (xy-plane), see (Fig. 5a).

Fig. 4 Chiral Hall effect and staggered mixed Berry curvature in Mn2Au. a
Crystal structure of Mn2Au with Mn atoms in sublattices A and B denoted
with red and blue balls, respectively, and Au atoms shown with yellow balls.
The canting of spins, initially oriented along z, is induced by applying an
exchange field along y. b Fermi energy dependence of the chiral Hall
conductivity for different strength of the exchange field (100meV
corresponds to 2° canting). c Band distribution of k-space Berry curvature
Ωn

zx for electronic states between +1.0 eV and +2.0 eV above the Fermi
energy, where the chiral Hall effect is pronounced, for the canting of +2°.
Dashed line indicates the doubly degenerate electronic band structure in
the absence of canting. The effect of opposite canting is identical, with the
sign of the Berry curvature of each band reversed. d Band distribution of
staggered mixed Berry curvature Ωn

λx for electronic states without canting
shown with dashed line in c. Note that Ωn

λx is identical for each of the doubly
degenerate bands. The correlation between the chiral Hall effect and
staggered mixed Berry curvature is evident.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00587-3 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:99 | https://doi.org/10.1038/s42005-021-00587-3 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


In the ground state, the monolayer of SRO exhibits a symmetry
breaking associated with rotation and tilts of oxygen octahedra
surrounding Ru atoms12. The band structure of SRO monolayer
around the Fermi energy is dominated by Ru-t2g states. The
combined effect of octahedral distortion, SOI and AFM ordering
on Ru-t2g states leads to a formation of a 0.96 eV gap at the Fermi
energy and breaking of degeneracies among the bands present in
a symmetric phase of this material, see (Fig. 5b)12. The corre-
sponding band splittings are found to be quite prominent around
the energies of −0.60, −0.21 and +1.13 eV, reflecting the strong
effect of SOI on the states there, (Fig. 5b).

Starting from the collinear AFM ground state of the system we
consider a small canting of staggered spins away from the x-axis
by θ= 5∘ (chirality “+”) and θ=−5∘ (chirality “−”), both in the
xy-plane (i.e., keeping the spins in-plane), as well as in the xz-
plane (as in Fig. 5a), showing the corresponding rearrangements
of the bands for the xy canting plane in Fig. 5b. The asymmetric
effect of the canting on the electronic band structure is most
prominent around the energies of −0.21, −0.60 and +1.13 eV,
where the effect of SOI is strongest. Here, depending on chirality
and specific Bloch vector, the initial splitting between the
“collinear” Ru-states gets several times larger upon canting.

Next, we assess the intrinsic Berry curvature contribution to
the AHE in SRO upon canting and compare it to the AHE in the
collinear state (see section Methods for more details). As was

shown recently12, in the collinear (along x) state considered here
SRO monolayer exhibits a significant crystal Hall effect over wide
regions of energy as a result of combined breaking of time-
reversal symmetry and translation by half a lattice constant
arising as a consequence of octahedral distortion. In addition to
the crystal Hall conductivity at zero canting, σ0xy , shown in
(Fig. 5c, d) with a shaded area, the canting by 5∘ with positive and
negative chirality induces significant changes to the AHC,
irrespective of whether the canting is performed in the xy-
(Fig. 5c, top) or xz-plane (Fig. 5d, top). Despite a relatively
modest effect on the re-distribution of the bands, the effect of
small canting on the AHC is especially drastic in the regions of
energy of [−0.6, −0.5] and [+1.0, +1.2] eV, where the magnitude
of σ0xy gets significantly enhanced by canting, and its sign depends
on chirality. We decompose the computed AHC of the canted
system into symmetric and antisymmetric components, σsxy and
σaxy , presenting the results in the bottom panels of (Fig. 5c, d). We
clearly observe that for the small canting angle of 5∘ the crystal
Hall conductivity σsxy follows the energy-dependence of σ

0
xy quite

closely for both tilting planes, which is consistent with the
perturbation theory arguments.

On the other hand, the behavior of the chiral Hall conductivity
σaxy stands in sharp contrast to that of σsxy and σ0xy . In analogy to
Mn2Au, given the smallness of canting, the magnitude of the

Fig. 5 Chiral and crystal Hall effect in monolayer of antiferromagnetic SrRuO3 (SRO). a Top view of the monolayer with staggered magnetization along x.
Green, blue and orange spheres mark Sr, Ru and O atoms, respectively, with arrows representing Ru spins. Visible is the octahedral distortion of oxygen
cage surrounding Ru atoms (rotation in the xy-plane and tilt with respect to the z-axis). b Band structure of SRO monolayer with spins along x (black line,
open circles), and in the canted state with canting angle of θ= ±5° in the xy-plane with respect to the x-axis (green and red lines for positive and negative
chirality, respectively). c Schematic of the geometrical setup: Canted state considering the canting angle θ= ±5° in the plane of the SRO film (xy-plane)
with respect to the x-axis. d Same as in c for the xz-plane of canting along z. e, f Computed anomalous Hall conductivity (AHC) as a function of Fermi level
position in the collinear (along x) as well as in the canted state. The corresponding geometrical setup is shown schematically in c and d respectively.
Shaded gray areas corresponds to the AHC in the initially collinear state, σ0xy , while blue and red lines mark the AHC for positive and negative chirality. g, h
The symmetric, σsxy (violet line), and antisymmetric, σaxy (orange line) parts of the AHC are shown on the background of the AHC in the collinear state
(shaded area). While the crystal Hall effect (σsxy) of SRO displays little variation with the canting plane, the chiral Hall effect (σaxy) is extremely sensitive to
the interplay of crystal symmetries and canting.
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chiral Hall effect that we observe appears gigantic, and it can be
attributed to near band degeneracies, with the cross-talk among
them activated by canting via staggered mixed Berry curvature
mechanism. While all three types of conductivities originate in
the same regions in energy associated with pronounced influence
of SOI on the electronic structure, there is no correlation in the
sign of σaxy and σsxy , and the peaks in σaxy are often not correlated
with the sharp features of crystal Hall effect, which is particularly
visible for the case of xz-canting. This is consistent with the
picture that the states which give rise to the chiral Hall effect and
which are sensitive to the canting-driven symmetry breaking are
not necessarily associated with the crystal – i.e., “conventional”
anomalous – Hall effect. The comparison of σaxy for two different
canting planes, (Fig. 5c, d), reveals extreme sensitivity of the
chiral Hall effect to the crystal symmetry of the lattice. In this
sense, tracking the chiral Hall effect with respect to two
independent planes of canting provides us with a detailed
information on the underlying crystal symmetry without the need
of changing the ground state direction of staggered
magnetization.

Chiral magneto-optical effect. Finally, we show that the chiral
contributions arise not only in the context of the AHE, but also in
the realm of magneto-optical (MO) effects. In order to do this, we
numerically evaluate the real and imaginary parts of the magneto-
optical conductivity (see Methods section for details) of mono-
layer SRO, starting from the collinear AFM configuration. We
further define the symmetric and antisymmetric parts of the
magneto-optical conductivity, σsxyðωÞ and σaxyðωÞ, by referring to
the frequency-dependent version of Eq. (1), upon canting by 5∘ of
opposite chirality in the xy- and xz-plane, in analogy to the
previous section.

The results of our assessment are presented in Fig. 6, where we
have chosen the Fermi energy to be positioned at the peak of the
chiral Hall effect for the corresponding rotation plane as shown in
(Fig. 6c, d): at EF= 1.05 eV for xy-, and at EF= 1.01 eV for xz-

plane of canting. Our analysis shows that, in analogy to their d.c.
versions, the crystal magneto-optical conductivity follows quite
closely the frequency distribution of the MO conductivity
computed without canting, both in its real and imaginary parts.
On the other hand, while the magnitude of chiral MO
conductivity remains large over a wide region of frequencies, its
structure is often not correlated with the corresponding behavior
of the crystal part of the conductivity in ω: for example in case of
xz-canting the chiral MO conductivity is very prominent on the
background of almost vanishing crystal MO conductivity in the
entire range of energies. This marks the two effects as distinct
magneto-optical phenomena. The chiral MO effect thus presents
a unique tool to track down optically-mediated electronic
transitions which are responsive to the effect of canting. Tracing
down the chiral contributions to the MO conductivity makes it
possible to gain a valuable insight into the interplay of electronic
structure with crystal symmetry and magnetic order.

Discussion
In this work, we promote the chiral Hall effect as a new tool to
access the properties of ferromagnetic and antiferromagnetic
materials. We uncovered that the chiral Hall effect has a quali-
tatively different Berry phase origin as compared to the conven-
tional AHE. Based on this, we are able to understand how a
gigantic chiral Hall effect can be achieved in compensated AFMs
even upon a very small canting accompanied by an almost van-
ishing ferromagnetic component of the magnetization. Addition
of the chiral Hall effect to the crystal Hall effect thus allows for
drawing a unified map of Hall effects taking place in canted
magnets.

As we have seen on the example of SrRuO3, the chiral Hall
effect is sensitive to the details of crystal structure, depending on
the plane of canting. In a realistic situation, given a robust ground
state direction of the staggered magnetization ŝ0 in an AFM,
which is accompanied by a vanishing or nonvanishing crystal
Hall effect, the plane of canting can be straightforwardly con-
trolled by a direction of an externally applied magnetic field B,

Fig. 6 Chiral magneto-optical effect in monolayer of antiferromagnetic SrRuO3. (a, e) Real and imaginary part of the magneto-optical conductivity in the
collinear state (gray shaded area) as well as its symmetric and antisymmetric parts for 5∘ spin canting in the xy-plane evaluated for the position of the
Fermi energy at EF= 1.05 eV. (b, f) Same as in (a, e) but for the xz-plane of canting evaluated at EF= 1.01 eV. The sketches depict the canting of the spins in
antiferromagnetic SRO monolayer upon an application of an external magnetic field along the ±y-axis c, and ±z-axis d.
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and the chiral Hall effect can be estimated as a difference in
measured Hall effect between opposite directions of B→−B, see
sketches in (Fig. 5). Sweeping the direction of the field in the
plane orthogonal to ŝ0 would allow to reconstruct the angular
dependence of the chiral Hall conductivity and determine its
nodal points (i.e., the directions for which it turns to zero), from
which the information about the details of the crystal symmetry
can be deduced. On the other hand, the response of the measured
signal to the strength of the magnetic field can be used to estimate
the magnitude of the Berry curvature response as given by the
geometrical theory, Eq. (9). The corresponding experimental
assessment of the evolution of chiral magneto-optical con-
ductivity, in combination with the magneto-optical spectra
without the field, can be used to reconstruct the exact details of
electronic structure of a given material, especially the energetic
position of states sensitive to canting that hosts large staggered
mixed Berry curvature.

Although the role of the chiral Hall effect in ferromagnets is
more difficult to access as it is difficult to realize the states of
opposite chirality in analogy to AFMs (especially in systems with
collinear ground state), the chiral Hall effect, as the dominant
contribution to the variation of the AHE upon canting, can
contribute strongly to the evolution of the AHE with temperature
via the effect of fluctuations. This is easy to understand by rea-
lizing that even in collinear ferromagnets with DMI the tem-
perature fluctuations will promote one type of chirality over the
other38, which will prohibit the opposite contributions to the
AHE from the states of opposite chirality from suppressing each
other. The variation of the AHE with temperature T corre-
sponding to the chiral Hall effect is expected to behave qualita-
tively differently with respect to the temperature-induced
magnetization change ΔM(T), which at low T is proportional to
θ2 with θ(T) being an effective fluctuations-driven deviation of
the local spins from the equilibrium magnetization direction.
Indeed, while the conventional theory of the AHE assumes that
the variation of the anomalous Hall resistivity with T is propor-
tional to ΔM(T) and thus to θ2(T), the chiral Hall effect imposes a
different, linear in θ(T) behavior. The fingerprints of the chiral
Hall effect can be thus uncovered from the scaling analysis of the
temperature-dependent Hall measurements in FM materials.

A promising approach to induce canting between collinear
spins in a ferromagnetic ground state, and thereby ignite the
chiral Hall effect, lies in referring to current-induced staggered
spin-orbit torques (SOTs)5, which have shown above to be closely
linked to the microscopics of the chiral Hall conductivity. Given
that an electric field applied to a ferromagnet exerts local torques
on the spins TA and TB, a crucial distinction can be drawn. While
the nonstaggered conventional SOT, T+= TA+ TB leads to a
coherent magnetization rotation3–5,28, the staggered component
of the SOT30 defined as T−= TA− TB additionally will attempt
to induce a finite canting in the system. In analogy to T+

28,
components of staggered SOT even and odd with respect to n+,
Teven
� and Todd

� , can be distinguished. In systems with inversion
symmetry staggered polar tensors of even rank and staggered
axial tensors of odd rank are forbidden by symmetry which
means that Teven

� and Todd
� are even in the Rashba strength.

However, polar tensors of odd rank and axial tensors of even rank
are forbidden by symmetry, and consequently both components
of T+(E) are odd in αR. Therefore, in contrast to nonstaggered
SOT, the staggered torques in ferromagnets do not necessarily
require broken inversion symmetry. Staggered SOTs can be also
used to induce canting in collinear AFMs5, in which case one has
to distinguish components which are even and odd with respect
to n−. As Todd

� ðEÞ is a polar tensor and Teven
� ðEÞ is a staggered

axial tensor, it can be shown that Todd
� ðEÞ and Teven

� ðEÞ are
respectively odd and even in the Rashba strength.

Generally, the interplay of the chiral Hall effect with current-
driven phenomena presents an exciting avenue to explore. By
referring to the mechanism of staggered torques, the chiral Hall
effect can manifest as a nonlinear contribution to the Hall effect,
in analogy to the nonlinear magnetoresistance effect used to
detect the Néel vector reversal in collinear AFMs39. Besides the
relation of the chiral Hall effects to various types of spin-torques
born in the system when a current passes through it, the new
flavor of the Hall effect should be also intertwined with the
phenomenon of current-induced DMI, where the sense and
magnitude of canting among spins can be altered upon passing a
current through the sample40,41. Moreover, the correlation of the
chiral Hall effect with the modifications in the electronic structure
brought by an external electric field e.g., in multiferroics materials
must be also profound.

In our work, we have defined the crystal and chiral Hall effects
with respect to the staggered (n−) and ferromagnetic (n+) com-
ponents for the system consisting of two spins, which ultimately
allowed for representation in terms of the vector chirality. The
generalization of this approach to multi-spin systems, for example
Mn3X type of systems42,43, B2044, FeMn-type45 or Heusler
compounds46 presents an exciting challenge. In the latter cases,
the symmetry properties of the anomalous Hall effect can be
scrutinized with respect to generalized AFM order parameters. In
analogy to this work, different flavors of spin and structural
chirality can be singled out, and their role in mediating various
contributions to the AHE can be identified. Ultimately, the
classification obtained from such an analysis, of which our study
presents a starting toy case, could be possibly reinterpreted in
terms of quantitative and qualitative multipole theory47,48, and
relation to various types of current-induced phenomena, such as
spin torques, could be established. We believe this general
direction of research to be of fundamental and practical impor-
tance to our understanding of chiral magnetism and our ability to
detect and control various chiral magnetic phases and their
dynamics.

Methods
Tight-binding model calculation. From tight-binding Hamiltonian the Berry
curvature was calculated according to the standard expression ΩnðkÞ ¼
�_2∑n≠m½2Imhunk jv̂xjumkihunk jv̂yjumki�=ðεnk � εmkÞ2; where Ωn(k) is the Berry

curvature of band n, _v̂i ¼ ∂ĤðkÞ=∂ki is the i’th velocity operator, unk and εnk are
the eigenstates and eigenvalues of the Hamiltonian ĤðkÞ, respectively. From 2 to 4
million k-points in the full BZ were used to arrive at well-converged values of the
anomalous Hall conductivity (AHC) determined as σxy ¼ �_e2

R
BZ

dk
ð2πÞ2 ΩðkÞ,

where Ω(k) is the sum (for each k) of Berry curvatures over the occupied bands. All
calculations were done at T= 10 K.

First-principles calculation of Mn2Au. Electronic structure of Mn2Au was cal-
culated by using a density functional theory (DFT) code FLEUR49, which imple-
ments the full-potential linearized augmented plane wave (FLAPW) method.
Exchange and correlation effects were included within the generalized gradient
approximation (GGA) by using Perdew-Burke-Ernzerhof (PBE) functional50

exchange-correlation functional. Lattice constants of a tetragonal cubic unit cell
were set a= 6.29a0 and c= 16.14a0, where a0 is the Bohr radius. The muffin-tin
radii of Mn and Au were chosen to be 2.53a0 for both atoms. Plane wave-cutoff was
set 3:9a�1

0 , and the BZ was sampled on 12 × 12 × 12 Monkhorst–Pack k-mesh51.
To calculate the Berry curvature, we obtained a tight-binding model of Mn2Au

by projecting Bloch functions onto 18 initial guess Wannier functions (WFs) – s, p,
d orbitals with spin up and down – for both Mn and Au atoms and obtained
maximally-localized WFs (MLWFs)52,53. To induce spin canting, we additionally
included an exchange field along y by HXC= (JXC/ℏ)Sy. The Berry curvature shown
in Fig. 5c was calculated by

Ωn
zxðkÞ ¼ �2_2

Im unk
� ��v̂z umk

�� �
unk
� ��v̂x umk

�� �	 

ðεnk � εmkÞ2 þ η2

ð10Þ

where we set η= 25 meV. The AHC shown in Fig. 5b was obtained by integrating
the Berry curvature over 240 × 240 × 240k-points for occupied states. The staggered
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mixed Berry curvature shown in Fig. 5d was evaluated by

Ωn
λxðkÞ ¼ �2_

Im½ unk
� ��∂λĤ umk

�� �
unk
� ��v̂x umk

�� ��
ðεnk � εmkÞ2 þ η2

; ð11Þ

where λ is defined as a canted angle of the magnetic moments on Mn-A and Mn-B
in zx plane. Note that it is related by a staggered torque operator

∂λĤ ¼ ∂Ĥ

∂θA
� ∂Ĥ

∂θB

¼ 1
i_

Ŝ
A
y � Ŝ

B
y ; Ĥ

h i

¼ T̂
A
y � T̂

B
y

ð12Þ

where Ŝ
A
y and Ŝ

B
y are spin operators on Mn-A and Mn-B atoms, respectively.

First-principles calculation of SrRuO3. DFT calculations were carried out with
the FLAPW method as implemented in the FLEUR code49. Using relaxed atomic
positions of the SRO monolayer, the electronic structure calculations at different
spin canting were carried out with the film version of the FLEUR code49. For self-
consistent calculations with the LAPW basis set a plane-wave cutoff of kmax ¼
4:2a�1

0 and the total of 24 × 24 k-points in the BZ were used for the convergence of
the charge density. The muffin-tin radii for Sr, Ru, O were set to 2.80 a.u., 2.32 a.u.,
and 1.31 a.u., respectively. We used the PBE50 exchange-correlation functional
within the GGA. The electron-electron correlation effects beyond GGA at the
magnetic Ru ions were taken into account by referring to the GGA+U method as
implemented in the SPEX code54, resulting in Coulomb interaction strength of
U= 2.52 eV and an intra-atomic exchange interaction strength of J= 0.44 eV.

To compute the Berry curvature, we first constructed a tight-binding
Hamiltonian in terms of maximally-localized Wannier functions projected from
the GGA+U+SOC [100] states using atomic-orbital-like Ru-t2g and Ru-eg states as
initial guess52,53. From this Hamiltonian the Berry curvature is calculated on a 50 ×
50k-mesh employing an adaptive 5 × 5 refinement scheme55 at points where the
value of the Berry curvature exceeded 50 a.u. These numerical parameters provided
well-converged values of the anomalous Hall conductivity. The magneto-optical
conductivity was calculated using the Kubo expression

σxyðωÞ ¼ _e2
R

dk
ð2πÞ2 ∑

n≠m
f nk � f mk

� �

´
Im unk v̂xj jumkh i umk v̂y

�� ��unk� �	 

εnk�εmkð Þ2�ð_ωþiηÞ2 ;

ð13Þ

where ℏω is the frequency of the applied electric field, and η a material dependent
broadening parameter. For calculations presented in (Fig. 5) we used η= 10 meV.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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