001     893803
005     20220113142706.0
024 7 _ |a 10.3389/fchem.2020.613388
|2 doi
024 7 _ |a 2128/28026
|2 Handle
024 7 _ |a altmetric:97144260
|2 altmetric
024 7 _ |a 33469526
|2 pmid
024 7 _ |a WOS:000608554200001
|2 WOS
037 _ _ |a FZJ-2021-02842
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Engelskirchen, Sandra
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Surfactant Monolayer Bending Elasticity in Lipase Containing Bicontinuous Microemulsions
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642067892_7307
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lipase-catalyzed reactions offer many advantages among which a high degree ofselectivity combined with the possibility to convert even non-natural substrates are of particular interest. A major drawback in the applicability of lipases in the conversionof synthetically interesting, non-natural substrates is the substantial insolubility of suchsubstrates in water. The conversion of substrates, natural or non-natural, by lipasesgenerally involves the presence of a water–oil interface. In the present paper, we exploit the fact that the presence of lipases, in particular the lipase from Candidaantarctica B (CalB), changes the bending elastic properties of a surfactant monolayerin a bicontinuous microemulsion consisting of D2O/NaCl -n-(d)-octane-pentaethyleneglycol monodecyl ether (C10E5) in a similar manner as previously observed for amphiphilic block-copolymers. To determine the bending elastic constant, we have used twoapproaches, small angle neutron scattering (SANS) and neutron spin echo (NSE)spectroscopy. The time-averaged structure from SANS showed a slight decrease inbending elasticity, while on nanosecond time scales as probed with NSE, a stiffening has been observed, which was attributed to adsorption/desorption mechanisms of CalB atthe surfactant monolayer. The results allow to derive further information on the influence of CalB on the composition and bending elasticity of the surfactant monolayer itself aswell as the underlying adsorption/desorption mechanism.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e J-NSE: Neutron spin-echo spectrometer
|f NL2ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)J-NSE-20140101
|5 EXP:(DE-MLZ)J-NSE-20140101
|6 EXP:(DE-MLZ)NL2ao-20140101
|x 1
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 2
700 1 _ |a Wellert, Stefan
|0 P:(DE-Juel1)184931
|b 1
|u fzj
700 1 _ |a Holderer, Olaf
|0 P:(DE-Juel1)130718
|b 2
|u fzj
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 3
|u fzj
700 1 _ |a Laupheimer, Michaela
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Richter, Sven
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nestl, Bettina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nebel, Bernd
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hauer, Bernhard
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.3389/fchem.2020.613388
|g Vol. 8, p. 613388
|0 PERI:(DE-600)2711776-5
|p 613388
|t Frontiers in Chemistry
|v 8
|y 2021
|x 2296-2646
856 4 _ |u https://juser.fz-juelich.de/record/893803/files/171.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893803
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT CHEM : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21