000893810 001__ 893810
000893810 005__ 20220131120347.0
000893810 0247_ $$2doi$$a10.1093/scan/nsaa075
000893810 0247_ $$2ISSN$$a1749-5016
000893810 0247_ $$2ISSN$$a1749-5024
000893810 0247_ $$2Handle$$a2128/28031
000893810 0247_ $$2altmetric$$aaltmetric:83839196
000893810 0247_ $$2pmid$$a32507896
000893810 0247_ $$2WOS$$aWOS:000593182700003
000893810 037__ $$aFZJ-2021-02849
000893810 082__ $$a610
000893810 1001_ $$0P:(DE-HGF)0$$aTaebi, Arezoo$$b0
000893810 245__ $$aPopulation variability in social brain morphology for social support, household size and friendship satisfaction
000893810 260__ $$aOxford$$bOxford Univ. Press$$c2020
000893810 3367_ $$2DRIVER$$aarticle
000893810 3367_ $$2DataCite$$aOutput Types/Journal article
000893810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625652574_22504
000893810 3367_ $$2BibTeX$$aARTICLE
000893810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893810 3367_ $$00$$2EndNote$$aJournal Article
000893810 520__ $$aThe social brain hypothesis proposes that the complexity of human brains has coevolved with increasing complexity of social interactions in primate societies. The present study explored the possible relationships between brain morphology and the richness of more intimate ‘inner’ and wider ‘outer’ social circles by integrating Bayesian hierarchical modeling with a large cohort sample from the UK Biobank resource (n = 10 000). In this way, we examined population volume effects in 36 regions of the ‘social brain’, ranging from lower sensory to higher associative cortices. We observed strong volume effects in the visual sensory network for the group of individuals with satisfying friendships. Further, the limbic network displayed several brain regions with substantial volume variations in individuals with a lack of social support. Our population neuroscience approach thus showed that distinct networks of the social brain show different patterns of volume variations linked to the examined social indices.
000893810 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893810 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893810 7001_ $$0P:(DE-HGF)0$$aKiesow, Hannah$$b1
000893810 7001_ $$0P:(DE-Juel1)176404$$aVogeley, Kai$$b2
000893810 7001_ $$0P:(DE-HGF)0$$aSchilbach, Leonhard$$b3
000893810 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C$$b4
000893810 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b5$$eCorresponding author
000893810 773__ $$0PERI:(DE-600)2236933-8$$a10.1093/scan/nsaa075$$gVol. 15, no. 6, p. 635 - 647$$n6$$p635 - 647$$tSocial cognitive and affective neuroscience$$v15$$x1749-5024$$y2020
000893810 8564_ $$uhttps://juser.fz-juelich.de/record/893810/files/Taebi_2020_Soc%20Cogn%20Affect%20Neurosci_Population%20variability%20in%20social....pdf$$yOpenAccess
000893810 909CO $$ooai:juser.fz-juelich.de:893810$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176404$$aForschungszentrum Jülich$$b2$$kFZJ
000893810 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893810 9141_ $$y2021
000893810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2021-02-04
000893810 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893810 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOC COGN AFFECT NEUR : 2019$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-04$$wger
000893810 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-04
000893810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000893810 920__ $$lyes
000893810 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000893810 980__ $$ajournal
000893810 980__ $$aVDB
000893810 980__ $$aUNRESTRICTED
000893810 980__ $$aI:(DE-Juel1)INM-3-20090406
000893810 9801_ $$aFullTexts