001     893810
005     20220131120347.0
024 7 _ |a 10.1093/scan/nsaa075
|2 doi
024 7 _ |a 1749-5016
|2 ISSN
024 7 _ |a 1749-5024
|2 ISSN
024 7 _ |a 2128/28031
|2 Handle
024 7 _ |a altmetric:83839196
|2 altmetric
024 7 _ |a 32507896
|2 pmid
024 7 _ |a WOS:000593182700003
|2 WOS
037 _ _ |a FZJ-2021-02849
082 _ _ |a 610
100 1 _ |a Taebi, Arezoo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Population variability in social brain morphology for social support, household size and friendship satisfaction
260 _ _ |a Oxford
|c 2020
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625652574_22504
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The social brain hypothesis proposes that the complexity of human brains has coevolved with increasing complexity of social interactions in primate societies. The present study explored the possible relationships between brain morphology and the richness of more intimate ‘inner’ and wider ‘outer’ social circles by integrating Bayesian hierarchical modeling with a large cohort sample from the UK Biobank resource (n = 10 000). In this way, we examined population volume effects in 36 regions of the ‘social brain’, ranging from lower sensory to higher associative cortices. We observed strong volume effects in the visual sensory network for the group of individuals with satisfying friendships. Further, the limbic network displayed several brain regions with substantial volume variations in individuals with a lack of social support. Our population neuroscience approach thus showed that distinct networks of the social brain show different patterns of volume variations linked to the examined social indices.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kiesow, Hannah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vogeley, Kai
|0 P:(DE-Juel1)176404
|b 2
700 1 _ |a Schilbach, Leonhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bernhardt, Boris C
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1093/scan/nsaa075
|g Vol. 15, no. 6, p. 635 - 647
|0 PERI:(DE-600)2236933-8
|n 6
|p 635 - 647
|t Social cognitive and affective neuroscience
|v 15
|y 2020
|x 1749-5024
856 4 _ |u https://juser.fz-juelich.de/record/893810/files/Taebi_2020_Soc%20Cogn%20Affect%20Neurosci_Population%20variability%20in%20social....pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893810
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176404
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOC COGN AFFECT NEUR : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21