| Hauptseite > Publikationsdatenbank > When bigger is faster: A self-Van Hove analysis of the enhanced self-diffusion of non-commensurate guest particles in smectics > print |
| 001 | 893816 | ||
| 005 | 20210810182040.0 | ||
| 024 | 7 | _ | |a 10.1063/5.0049093 |2 doi |
| 024 | 7 | _ | |a 0021-9606 |2 ISSN |
| 024 | 7 | _ | |a 1089-7690 |2 ISSN |
| 024 | 7 | _ | |a 1520-9032 |2 ISSN |
| 024 | 7 | _ | |a 2128/28064 |2 Handle |
| 024 | 7 | _ | |a altmetric:103539668 |2 altmetric |
| 024 | 7 | _ | |a 34241175 |2 pmid |
| 024 | 7 | _ | |a WOS:000653338400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-02855 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Lettinga, M. Paul |0 P:(DE-Juel1)130797 |b 0 |e Corresponding author |
| 245 | _ | _ | |a When bigger is faster: A self-Van Hove analysis of the enhanced self-diffusion of non-commensurate guest particles in smectics |
| 260 | _ | _ | |a Melville, NY |c 2021 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1625898010_29986 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We investigate the anomalous dynamics in smectic phases of short host rods where, counter-intuitively, long guest rod-shaped particles diffuse faster than the short host ones due to their precise size mismatch. In addition to the previously reported mean-square displacement, we analyze the time evolution of the self-Van Hove functions G(r, t), as this probability density function uncovers intrinsic heterogeneous dynamics. Through this analysis, we show that the dynamics of the host particles parallel to the director becomes non-Gaussian and therefore heterogeneous after the nematic-to-smectic-A phase transition, even though it exhibits a nearly diffusive behavior according to its mean-squared displacement. In contrast, the non-commensurate guest particles display Gaussian dynamics of the parallel motion, up to the transition to the smectic-B phase. Thus, we show that the self-Van Hove function is a very sensitive probe to account for the instantaneous and heterogeneous dynamics of our system and should be more widely considered as a quantitative and complementary approach of the classical mean-squared displacement characterization in diffusion processes.I. INTRODUCTION |
| 536 | _ | _ | |a 5243 - Information Processing in Distributed Systems (POF4-524) |0 G:(DE-HGF)POF4-5243 |c POF4-524 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Alvarez, Laura |0 0000-0001-7018-7817 |b 1 |
| 700 | 1 | _ | |a Korculanin, Olivera |0 P:(DE-Juel1)188512 |b 2 |
| 700 | 1 | _ | |a Grelet, Eric |0 0000-0002-9645-7077 |b 3 |
| 773 | _ | _ | |a 10.1063/5.0049093 |g Vol. 154, no. 20, p. 204901 - |0 PERI:(DE-600)1473050-9 |n 20 |p 204901 - |t The journal of chemical physics |v 154 |y 2021 |x 1089-7690 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/893816/files/5.0049093.pdf |y Published on 2021-05-24. Available in OpenAccess from 2022-05-24. |
| 909 | C | O | |o oai:juser.fz-juelich.de:893816 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130797 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0001-7018-7817 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188512 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 0000-0002-9645-7077 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5243 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-02 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-02-02 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-02 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-4-20200312 |k IBI-4 |l Biomakromolekulare Systeme und Prozesse |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-4-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|