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Bayesian estimations of orientation distribution functions from small-angle scattering enable direct
prediction of mechanical stress in anisotropic materials
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Properties of soft materials are influenced by their anisotropic structuring under nonequilibrium fields.
Although anisotropic structure-property relationships have been extensively explored theoretically, comparison
to experiments requires determination of the microstructural orientation probability distribution function (OPDF)
of microstructural elements. Small angle scattering (SAS) measurements encode information about the OPDF,
but tools to navigate this connection are incomplete. Here, we develop and validate an explicit framework to
link arbitrary OPDFs to SAS measurements. Specifically, we propose, validate, and apply a method, maximum
a posteriori scattering inference (MAPSI), whereby the OPDF may be obtained from SAS measurements using
a Bayesian estimation method. Using this method, we obtain estimates of the full 3D OPDF for two model
semidilute fd-virus (rodlike) dispersions at concentrations that are approximately equal to and twice the overlap
concentration. From the OPDF, we calculate its second and fourth moments and compare these to predictions
for a dilute suspension of rigid rods and to a recent theory for semidilute suspensions. Finally, we use both
the theoretical and measured moments to calculate the stress, both for dilute and semidilute suspensions. These
predictions are not only compared to each other, but also to measured values of the shear stress, and point
to new insights into the behavior of suspensions of highly elongated particles in the transition between dilute
and semidilute behavior. We also use this new framework to provide perspective on the connection between
scalar parameterizations of scattering and the OPDF that have frequently been used in the past. The new tools
developed in this work provide an unprecedented path toward experimental validation of dynamical theories of
rodlike colloids and polymers, and for measurement of nonequilibrium structures and stresses of other complex
fluids and soft materials with SAS.
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I. INTRODUCTION

Nonequilibrium fields often produce anisotropic structures
and properties in soft materials due to the orientable na-
ture of material elements [1,2]. In such situations, diffraction
represents a powerful technique for measuring anisotropic
microstructure to connect theoretical models to macroscopic
properties. In particular, small angle scattering (SAS) of light
or neutrons enables one to probe length scales ranging from
nanometers to microns, corresponding to structural features
that are relevant to many soft materials [3]. SAS sample
environments have been developed to make measurements
in situ under applied flow, magnetic and electrical fields
where the external field can induce microstructural orienta-
tion, stretching and/or aggregation [4–8]. Such experiments
can be utilized to connect nonequilibrium processing to struc-
ture, dynamics and the resultant materials properties of soft
material systems [9–11].

*Helgeson@ucsb.edu

In this work, we are specifically concerned with the prob-
lem of using SAS to determine the orientation probability
distribution function (ODPF) for dispersions of rigid, non-
spherical objects under simple shear flow. Although here we
focus exclusively on shear flow, the models and methods we
discuss can be generalized to other orienting fields. The ODPF
describes the probability that a particle will be oriented in
a particular direction, and moments of the OPDF provide a
direct link to theories that describe structure-property relation-
ships in anisotropic materials, such as mechanical, optical and
transport properties [12]. The problem of extracting OPDFs
from SAS measurements has received considerable atten-
tion [4,6,13,14]. In the following, we will briefly summarize
current methods to analyze anisotropic scattering from soft
materials, which will highlight the need for new methodol-
ogy to extract quantitative OPDFs. We refer the interested
reader to Ref. [15] for a more thorough review on this
subject.

In principle, SAS measurements encode information about
the underlying OPDF of the material under measurement.
However, in addition to being pre-ensemble averaged, this
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information is convoluted by the fact that the OPDF is an in-
trinsically 3D property (i.e., it can be defined on the surface of
a unit sphere representing orientation space for axisymmetric
particles), whereas SAS measurements are typically recorded
as a 2D projection of the scattering onto a planar detector. In
some cases, such as for spatially homogeneous uniaxial fields,
symmetry conditions can be imposed to eliminate the need for
3D information from the 2D measurement [16]. By contrast,
the most widely utilized flow for studies of soft materials and
complex fluids is simple shear flow, which breaks uniaxial
symmetry such that a full 3D description is required for the
OPDF. As such, there is no exact mapping of the “inverse
problem” that connects a single 2D scattering measurement
to a unique 3D OPDF. To overcome this limitation, it has
been suggested that scattering measurements should be made
under a series of rotational 2D projections, however sample
environments to make these measurements have not yet been
developed [17–19]. In this work, we will explore the use of
scattering data in two or three orthogonal planes, as these
configurations are currently available for flow-SANS mea-
surements [4,20,21].

In general, prior researchers attempted one of two ap-
proaches to estimate the OPDF: (1) the use of various
model-free parameterizations of the scattering anisotropy in
the measurement plane, which are assumed to correlate with
analogous metrics of the real-space 3D OPDF, or (2) the use
of a 3D structural model whose predicted scattering is used
to fit various parameters of the model to the data. For case
(1), scalar parameters such as the “alignment factor” (A f ) and
Hermans’ orientation parameter are used to qualitatively track
the evolution of SAS anisotropy, and proposals have been
made about the relationship of these parameters and moments
of the OPDF [13,22–26]. In the SI, we explore this case
further, and demonstrate that it does not generally provide
quantitative results for moments of the OPDF. For case (2),
fitting of SAS patterns has been restricted to situations where
the microstructure is modeled as a cylinder and the OPDF is
assumed to be uniaxial [14,27–35]. As will be discussed in
detail later, the ill-posedness of the underlying fitting prob-
lem makes these schemes highly sensitive to experimental
noise.

Experimental measurement of the OPDFs of nonspherical
particles in flow is especially relevant to the development of
rheological models of dispersions, nanocomposites and rod-
like polymers. For the limiting case of noninteracting, rigid,
axisymmetric particles in a Newtonian solvent, a rigorous mi-
cromechanical theory for the particle contribution to the stress
exists [12,36] based upon evolution of the OPDF according
to the Smoluchowski equation in orientation space where
orientational probability is advected by flow (as described by
Jeffery’s equation [37]) and randomized by rotational diffu-
sion due to thermal fluctuations. Corrections to this theory
have been proposed for semidilute systems to account for
direct particle interactions [38–40]. In all of these theories, the
structure and stress are only dependent on the particle shape,
concentration, and moments of the OPDF [12]. Therefore
direct measurement of the OPDF under flow would provide
a critical test of the theoretical models for particle orientation,
and would also enable a direct prediction of the stress that
can be compared with experimental measurements. While

the OPDFs of micron-sized particles can be directly probed
with optical microscopy, scattering techniques such as SAS
are required to probe the OPDF of nanoparticles under flow
[41–43]. Given the practical ability to produce homogeneous
simple shear flows and the aforementioned breaking of uni-
axial symmetry, simple shear flow presents a rigorous test of
such theories. The preferred model system for structural and
mechanical studies of nonspherical nanoparticles in simple
shear flow has been aqueous dispersions of fd-viruses—rigid,
monodisperse and rodlike particles [26,44–48]. In this work,
we will probe SAS from aqueous dispersions of fd-virus par-
ticles in simple shear flow.

The primary objectives of this work are the following.
(1) First, to develop a generalized framework for analyzing
anisotropic SAS measurements of dispersions of rodlike parti-
cles under simple shear flow that accounts for contributions to
the scattering resulting from particle shape and the 3D nature
of the OPDF, ultimately resulting in parameter-free and fully
3D OPDF estimations from multiprojection SAS measure-
ments. (2) Second, to utilize this method to compare measured
properties of the fd-virus dispersions at concentrations near
or somewhat above the critical overlap concentration φ∗, in-
cluding moments of the OPDF, and rheological properties in
shear flow, with theoretical predictions for dilute suspensions,
and extensions to that theory that have been proposed for
semidilute systems.

With regard to the first objective, we develop the ex-
pressions for predicting the scattering due to oriented,
nonspherical particles in a dilute dispersion under simple
shear flow and propose model-independent methods to extract
the OPDF from SAS measurements that account for the three-
dimensionality of particle orientations. We then develop a
new approach based upon Bayesian estimation theory that we
call “maximum a posteriori scattering inference” (MAPSI) to
extract parameter-free estimates of the 3D OPDF from planar
SAS measurements. We test the accuracy and properties of
this method by applying it to the case of dilute suspensions
where we can calculate the SAS patterns, and for which we
know the exact OPDF. We then apply MAPSI to infer OPDFs
from SANS measurements of semidilute fd-virus dispersions
in simple shear flow. We calculate moments of the OPDF that
are related to the macroscopic stress and compare them with
moments calculated from the theories for a dilute suspension
of noninteracting particles. Using the measured moments, we
also calculate the bulk stress, using an expression derived by
Batchelor for noninteracting particles [12]. These predictions
of the stress are then compared with mechanical measure-
ments of the shear stress for the same fd-virus suspensions as
a means to test the applicability of the theoretical expressions
for the stress.

A. Experimental methods

The f dY21M viruses used in this work are monodisperse,
rodlike (with length, L = 920 nm, and radius, R = 3.3 nm),
and rigid (Lp/L = 11, where Lp is the persistence length)
particles [26,40,44–47]. The f dY21M viruses were prepared
using standard protocols [49]. The viruses were dispersed in a
20 mM Tris/100 mM NaCl/D2O buffer at two concentrations
of 0.1 and 0.2 vol% (where φ∗ ≈ 24(2R/L)2 = 0.124 vol%
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is the overlap concentration [2]). The salt concentration was
chosen to eliminate the effect of charge interactions between
the viruses as demonstrated by Lang et al. using rheologi-
cal measurements, and the virus concentrations were chosen
to be in the regime of φ∗ = O(1) to explore the effects of
interactions between the viruses, while limiting direct phys-
ical interactions and still providing sufficient scattering signal
above background [40].

Two different flow cells were used to probe different pro-
jections of SANS data from the same sample under steady
simple shear flow with varying shear rate, γ̇ . Scattering in
the flow-vorticity plane was probed utilizing the 1−3 plane
rheo-SANS flow cell, which is an Anton Paar MCR 501
rheometer (Anton Paar GmbH, Graz, Austria) with a quartz
Couette geometry [20]. Since the 1−3 plane measurements
were made in a rheometer, the shear stress was measured
simultaneously. Scattering in the flow-gradient plane was
probed using a 1−2 plane shear cell [20]. A similar gap size
(1 mm) and outer cylinder radius (25 mm) were used for both
sample environments. Both measurements were conducted at
the National Institute of Standards Center for Neutron Re-
search on the VSANS instrument with λ = 5 Å and �λ/λ

= 0.11. In this work, we include results for the q-range from
0.02 to 0.2 Å–1. All measurements were performed at 25 °C.
Data from the measurements were reduced using standard
NCNR protocols with Igor PRO software to correct for empty
cell, background, and intensity normalization to an absolute
scale [50].

II. RHEOLOGICAL THEORIES FOR SUSPENSIONS
OF BROWNIAN PARTICLES

In the sections to follow, we utilize previously published
theories for the rheology of dilute and semidilute suspen-
sions of axisymmetric, elongated Brownian particles. In the
interest of brevity, we do not repeat these theories here, but
we recognize that they may not be familiar to all readers
and we therefore summarize the key aspects in the SI. These
theories consist of two parts. One is the theory for calculating
the OPDF in flow, namely the Smoluchowski or convection-
diffusion equation in orientation space,

DN

Dt
+ ∂

∂p
· (N ṗ) = ∂

∂p
·
(

Dr
∂N

∂p

)
, (1)

where N(p,t) is the OPDF, the unit vector p specifies the
orientation of the axis of particle symmetry, ṗ is the rotation
of this axis by the flow, and Dr is the rotational diffusivity. The
second component of the theory is the expression that relates
the stress to the OPDF.

The only case for which an exact theory is available is
the limit of a dilute suspension of noninteracting Brownian
particles. For this case,

ṗ = � · p + re
2 − 1

re
2 + 1

[E · p − (p · E · p)p], (2)

which is Jeffery’s solution for rotation of an axisymmetric
particle in a homogeneous flow [37].

Here � is the vorticity tensor, E the rate of strain ten-
sor, and re the particle’s effective aspect ratio (for cylinders,

re ≈ L
2R

√
8π

16.35 ln( L
2R )

where L is the cylinder length and R is

the cylinder radius) [51]. The rotational diffusion coefficient
for an isolated Brownian particle is [52]
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(
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)
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⎛
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(

L
R

)
1 + 0.64

ln
(

L
R

)
⎞
⎟⎠, (3)

where kbT is the thermal energy and ηs is the suspending
fluid viscosity [2,53]. For this limit, there is also an exact
framework first provided by Batchelor for calculating the
particle contribution to the stress tensor, given knowledge of
the OPDF [12]. For highly elongated particles this can be
expressed in the form

σp = 2ηsφ

(
A

(
S(4) : E − 1

3
IS : E

)
+ Dr,0F

(
S − 1

3
I
))

,

(4)

where

S =
∫

pp N (p, t )dp and S(4) =
∫

pppp N (p, t )dp (5)

are the second and fourth moments of the OPDF. Here, φ is
the volume fraction of rods and A and F are coefficients that
depend only on the aspect ratio re of the particles. Equation (4)
will be referred to as Batchelor’s expression for the remainder
of this work.

For the simple shear flows considered in this work, the
nonzero components of the vorticity and rate of strain tensors
are 
12 = −
21 = γ̇ /2 and E12 = E21 = γ̇ /2, where γ̇ is the
shear rate and the subscripts 1 and 2 denote the flow and
gradient directions. Qualitatively, the orientation distribution
will depart from the isotropic, equilibrium distribution in a
manner that depends on the relative strength of the flow and
the rotational diffusion. This can be parameterized via the
rotational Peclet number, Per = γ̇ /Dr,0. For the fd-virus in
D2O solvent at 25 °C (ηs = 1.1 mPa s), this yields Dr,0 =
17 s–1. Therefore we expect to observe significant alignment
of the microstructure when γ̇ > 17 s–1 (i.e. Per > 1). To ob-
tain detailed quantitative results for N(p,t), the Smoluchowski
equation (1) was solved numerically using the method out-
lined by Férec et al., which was specifically designed to enable
higher stability at large Per [54]. The details of this method
and the discretization used in the present work can be found
in the SI. Calculations of moments of N(p) and scattering
intensities, I (q), were made using numerical integration with
the mid-point rule.

In the present work, we will use the OPDF for the dilute
case to both predict the expected SAS patterns and to predict
the stress. We will discuss the theory required for predicting
the scattering in the next section as it requires some exten-
sion of existing theory. The stress is calculated via Eqs. (4)
and (5), with geometric parameters A = 820, Dr,0 = 17 s–1,
and F = 3830, corresponding to re = 76, which is the value
for the fd-virus [51]. For simple shear flow, the relevant
stress components are the shear stress (the viscosity), and
the first and second normal stress differences. In terms of the
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components of S and S(4), these are

ηp

ηsφ
= σ12,p

ηsφγ̇
= η − ηs

ηsφ
= 2

(
AS(4)

1122 + Dr,0F

γ̇
S12

)
, (6)

N1

ηsφ
= σ11,p − σ22,p

ηsφ

= 2
(
Aγ̇

(
S(4)

1112 − S(4)
1222

) + Dr,0F (S11 − S22)
)
, (7)

N2

ηsφ
= σ22,p − σ33,p

ηsφ

= 2
(
Aγ̇

(
S(4)

1222 − S(4)
1233

) + Dr,0F (S22 − S33)
)
. (8)

The normalization of these quantities was chosen such that
they are independent of particle concentration and solvent
viscosity.

The dilute theory is applicable when the mean spacing
between particles is large compared to their length, i.e., when
φ � 4R2/L2. Clearly, neither of the fd-virus dispersions con-
sidered in this work is close to satisfying this conditions.
Beyond the dilute limit, there is no exact theory, although
there have been a number of empirical extensions of the di-
lute theory to consider the semidilute regime [38,39,55,56].
Among these, one that has received recent attention, partly
due to recent comparisons with data from fd-virus dispersions,
is that due to Dhont and Briels with extensions by Lang et al.
that we will refer to as the modified D-B model [39,40,47,57].
This theory is adapted in a recent paper, and we follow their
presentation [40]. The key elements of the theory for the
present study are again in Ref. [15].

III. THEORY FOR SAS AND DATA ANALYSIS
VIA BAYESIAN ESTIMATION

In general, the a priori description of anisotropic scattering
by oriented microstructures from requires two components.
The first is a form factor model that takes as an input a real-
space description of the distribution of scattering length den-
sity (SLD), ρ, within a geometrically defined particle shape
and orientation, which is then averaged against the OPDF.
The second is the physical theory, described in the prev-
ious section, that describes how the OPDF evolves due to
the details of an imposed orienting field. Alternatively, the
former can be used in closed form by “fitting” either the
single-particle form factor and/or the OPDF to experimentally
measured small-angle scattering (SAS) data.

A. Scattering theory: calculating the orientation-dependent
form factor scattering

SAS measures the intensity with which radiation (e.g.,
neutrons, light) is scattered from a material as a function
of the scattering wavevector, q = 4π sin(�/2)/λ, where �

is the scattering angle (made by the vectors of incident and
scattered radiation) and λ is the wavelength of the incident
radiation. We emphasize that q is a vector, and so the scatter-
ing in general will depend on the direction of q relative to the
local orientation of the material (Fig. 1). We assume single
elastic scattering events from a homogeneous dispersion of
particles with uniform scattering length density (SLD). Under

FIG. 1. The orientational coordinate system for a rod relative to
the simple shear flow field indicated on the coordinate axis. The
angles (φ, θ ) provide information about particle orientation in the
flow (qu), gradient (q∇u), and vorticity (qω) directions. For the 1−2
and 1−3 sample environments, the relationship between the flow
field and beam coordinate systems for the two sample environments
used experimentally in this work are provided. In a real experiment,
the direction of incident radiation (qz) will not change, only the orien-
tation of the flow relative to the incident radiation using different flow
cells. Not pictured is the detector for the 2−3 plane, where incident
radiation is along the flow direction.

conditions where intraparticle and interparticle scattering cor-
relations do not interfere, the intensity of radiation scattered
from a material at some q, I(q), is related to contributions from
intraparticle scattering [the form factor, P(q)] and interparticle
scattering [the structure factor, S(q)]

I (q) = �(�ρ )2VpP(q)S(q) + b, (9)

where � is the volume fraction of particles, �ρ is the SLD
contrast between the particle and the suspending fluid, Vp is
the average particle volume, and b is the incoherent scattering
cross-section. The overbars in the expression signify ensemble
averages of the quantities where, importantly, the product
of the form factor and structure factor is the quantity being
averaged on the right-hand side. For the experiments to which
we will be comparing this framework, the measurements were
made at low particle concentrations and in a sufficiently high
q-range where interparticle scattering effects are insignificant
[i.e., P(q)S(q) ≈ P(q) for all measured q]. Notably in SANS,
one can measure or predict �, �ρ and the shape of the particle
from other independent measurements.

The orientation of a 3D particle with arbitrary shape is
uniquely defined by three orthogonal orientation vectors p1,
p2, and p3. If one only considers effects from orientation on
the form factor, the measured form factor of such a particle
is the macroscopic average of the single-particle form factor
at all orientations weighted by the OPDF [1,28]. One can
calculate this average form factor as

P(q) =
∫∫∫

N (p1, p2, p3)P(p1, p2, p3; q)dp1dp2dp3,

(10)
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where P(p1,p2,p3;q) is the form factor for a single particle
at a single orientation and N(p1,p2,p3) is the OPDF. The
calculation of P(p1,p2,p3;q) at a single, arbitrary orientation
in 3D space is described in Ref. [15], with examples pro-
vided for cylindrical, parallelepiped, and ellipsoidal particles
in Cartesian q space. Equation (10) is completely general in
that it makes no assumptions about the mathematical form
of the OPDF or particle shape. In conjunction with recent
advances in calculating form factors for particles at arbitrary
orientations [58], this expands the range of microstructures
and forms of OPDFs for which one may predict SAS patterns
to monodisperse systems of arbitrarily shaped rigid particles
with a known OPDF, that are sufficiently dilute (although not
hydrodynamically dilute as required by the dynamical theory)
such that P(q)S(q) = P(q) in the q-range considered. We will
demonstrate later that both fd-virus dispersions considered in
this work satisfy this criterion.

For this work, due to the axisymmetric shape of the fd-
virus, the orientation of the particle is best described by one
orientation vector, p, in spherical polar coordinates (φ, θ )
relative to a Cartesian simple shear flow field (Fig. 1) with
qu, q∇u, and qω as the wavevector components in the flow (u),
gradient (�u) and vorticity (ω = �×u) directions, respec-
tively. We emphasize that θ defined here is not the same as �

from the definition of q. In what follows, we will sometimes
refer to the flow, gradient and vorticity directions as 1, 2, and
3, respectively. In SAS measurements, scattering intensity is
measured on a planar detector positioned very far from the
sample relative to the detector size. As a result, measurements
are typically assumed to be made in the qz ∼ 0 plane where
z is the direction of incident radiation. Depending on the
sample environment used, one may probe the structure in
the q∇u ∼ 0 (flow-vorticity) plane for the 1−3 rheo-SANS
sample environment or in the qω ∼ 0 (flow-gradient) plane
for the 1−2 shear cell sample environment [20,21]. One can
also configure the rheo-SANS sample environment such that
measurements are made in the qu ∼ 0 (gradient-vorticity)
plane; however, in this work, SAS was not measured in this
plane due to complications from the curvature of the sample
environment.

Equations (9) and (10) provide the general framework for
computing the SAS from dilute, rigid particle dispersions.
This framework can be utilized in two distinct ways: (1)
in the “forward problem,” the physical theory for dilute,
rigid particles in flow can be used to predict the OPDF and,
therefore, the SAS intensity; and (2) in the “inverse prob-
lem,” the measured SAS intensity can be used to infer the
OPDF. The use of the framework in these ways is predi-
cated on one’s ability to derive orientation-dependent form
factors for the particle, P(p;q), which must be validated for
the system of interest. In this work, we validate a cylinder
form factor to describe the fd-viruses by comparing equilib-
rium SAS measurements to SAS predictions with a uniform
OPDF.

B. Model-free Bayesian inference method for inverting
scattering integral equations

When the fluid is not dilute, hydrodynamic and direct inter-
actions render the flow-induced particle dynamics too difficult

to solve, so that a rigorous Smoluchowski equation, equivalent
to Eq. (1), cannot be formulated without simplifying assump-
tions such as those inherent in the derivation of the modified
D-B model described previously. In this case, the only way to
assess such a model is to develop a generalized framework for
inferring OPDFs directly from experimental SAS data. Such
an “inverse problem” is commonly encountered in scattering
measurements, for which model-free solution approaches are
highly sought due to their general applicability. Examples
of such approaches are the use of constrained regularization
algorithms for the parameter-free estimation of real-space
density correlation functions from static scattering data [59],
the structures of 2D lattices [60], or distributions of Brownian
diffusion coefficients from dynamic scattering experiments
[61].

In this work, we introduce a novel approach we call
maximum a posteriori scattering inference (MAPSI) based
on Bayesian estimation to solve for the OPDF from SAS
measurements and a prescribed scattering model for the ori-
entable particle. The general problem statement is to solve
Eqs. (9) and (10) for N (p), given the measured scattering
intensity, I (q), and an expression for the single particle form
factor as a function of p and q, i.e., �(�ρ)2VpP(q, p). This
problem represents a Fredholm integral equation of the first
kind and is, therefore, fundamentally ill-posed (i.e., a so-
lution does not exist that is stable against perturbations in
the data). Regularization has been demonstrated as an ef-
fective method for numerically solving such problems, [62]
but these methods have not been applied toward the infer-
ence of OPDFs from SAS. Recently, a Bayesian method
was proposed to solve a similar ill-posed problem with the
application of inferring nanoparticle size distributions from
single particle tracking experiments [63]. Here, we adapt a
similar mathematical framework for analysis of anisotropic
scattering. We will briefly outline the method as it applies
to extracting OPDFs from SAS experiments while a more
rigorous description of the method is included in Ref. [15]. We
note that MAPSI as outlined here is valid for axisymmetric
particles but can be extended to include nonaxisymmetric
particles by utilizing three angles to describe the orienta-
tion. Furthermore, our formulation of MAPSI applies no
physical constraints on the OPDF and is therefore gen-
eral to any particle and orienting field (e.g., biaxial simple
shear flows), although additional constraints due to symme-
try of the OPDF could be incorporated if desired. We will
not incorporate such constraints in this work due to the
known biaxiality of the OPDFs for particles in simple shear
flow.

First, the unknown OPDF is discretized into a linear com-
bination of hat functions in orientation space as N (p) =∑M

m=1 wmχm(p), where M is the number of hat functions used
to discretize the OPDF, χm(p) is a 2D spherical triangular
hat function (see Ref. [15]) centered at a grid point indexed
by m and is a function of orientation on the surface of the
unit sphere S2, and wm is the weighting for the hat function.
Specifically, hat functions were generated on the 2-sphere by
taking the convex hull of a sufficiently resolved Kurihara grid
[64]. With this discretization, defining p1 = p as the only
applicable orientation vector, and setting P(q)S(q) = P(q),
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Eqs. (9) and (10) become

�(�ρ)2Vp

∫
P(qk, p)N (p)dp =

M∑
m=1

Ak,mwm,

Ak,m = �(�ρ )2Vp

∫
P(qk, p)χm(p)dp. (11)

The OPDF is restricted to satisfy the conditions∫
N (p)dp = 1, N (p) � 0 for all p. These requirements yield

the constrained optimization problem

ŵm = arg max
wm

−1

2K

K∑
k=1

1

σ 2
k

[
I (qk )−b−

M∑
m=1

Ak,mwm

]2

+λg(w)

s.t. w � 0

M∑
m=1

wm = 1, (12)

where K is the number of collected points in q space, σk

is the standard deviation of intensity of the kth wavevector
(a known experimental quantity), and λg(w) is the log-prior,
or regularization term. The regularization term is crucial for
addressing the ill-posedness of the underlying problem and
ensuring that the scattering intensity does not overfit the data
and produce artificially sharp peaks in the OPDF [59,63]. In
this case, we define the regularization term as the integral
of the square of the gradient of the OPDF, which can be
represented as a quadratic form in the weights and results in
an optimization problem that can be efficiently solved with a
quadratic programming solver. The hyperparameter, λ, which
governs the strength of the regularization term, is found via
cross validation in order to prevent overfitting when dealing
with a finite amount of data. See Refs. [15,63] for additional
details on the cross-validation procedure.

The function χ (pm) was chosen as the means of discretiz-
ing the OPDF to simplify the numerical scheme by enabling
one to cast the optimization as a quadratic problem and allow-
ing for one to easily constrain N (p) � 0 for all p. In Ref. [15],
we demonstrate that hat functions can approximate smooth
functions on the surface of a sphere to arbitrary accuracy.

We specifically emphasize for studies that utilize different
detector planes that one may specify the measured wavevec-
tors (qk’s) that are included for extracting the OPDF. For
example, in this work we will consider extracted OPDFs
that utilize measured wavevectors from a single measurement
plane (i.e., using measurements from only the 1−2 or 1−3
sample environment) or from two measurement planes (i.e.,
using measurements from both the 1−2 and 1−3 sample en-
vironments). This will allow us to assess the information that
is gained or lost from measurements in a particular plane. For
data sets that combine measurements from different planes, it
is crucial that q vectors are expressed with respect to the same
reference frame (in this case the flow field, see Fig. 1).

MAPSI presents distinct advantages over other method-
ologies that determine OPDFs from SAS measurements.
Compared to more conventional fitting strategies, this method
makes no assumptions about the mathematical form of the
OPDF. We note that the recently proposed spherical harmon-

ics expansion shares this advantage [14]. Unique to MAPSI is
the use of and search for the regularization parameter λ. Ad-
dressing the ill-posedness of the inference problem requires
the use of a regularization term to avoid overfitting. Rather
than arbitrarily choosing the strength of the regularization
term, λ, MAPSI utilizes cross validation to find a value of λ

that is most consistent with the data under measurement un-
certainty. SAS measurements have inherent uncertainty given
the spread in incident neutron wavelength and finite mea-
surement time of experiments, which should be reflected in
any parameter extracted from the measurement. Given the
Bayesian nature of MAPSI and more specifically the search
for λ (via cross validation), these uncertainties are naturally
propagated through the analysis to the posterior distribution
of the weights, which we sample with a Monte Carlo scheme
in order to extract measures of error for derived quantities of
the distribution. In this work, we will use such a sampling
procedure to extract moments of the OPDF with error bars
that represent the standard deviation of the full posterior prob-
ability distribution of moments or other derived quantities.

IV. RESULTS AND DISCUSSION

A. Near-equilibrium 1D scattering for validation
of scattering model

To validate the single-particle scattering model (i.e.,
�(�ρ)2VpP(q, p)) used to describe the SAS from the fd-
virus dispersion, we compare the isotropic predictions of the
scattering model for the fd-virus with equilibrium SANS mea-
surements. As mentioned before, the fd-virus used in this
work is typically modeled as a cylinder with radius, R = 3.3
nm, and length, L = 920 nm [46,47]. The fd-virus scattering
length density (SLD) was calculated to be ρSLD,p = 3.03 ×
10–6 Å–2 using the “Biomolecular SLD Calculator” available
through ISIS and the known protein sequence for the virus
[65]. The solvent SLD was fixed at that of pure D2O (ρSLD,s =
6.33 × 10–6Å–2, although one may expect the solvent D2O
to be slightly lower due to the added buffer. The incoherent
background scattering was calculated from a linear fit of a
plot of q4 versus Iq4, where the slope of the line is equal to the
background. The only remaining parameter, the concentration
of the fd-virus, is determined from a fit of the measured
equilibrium scattering. We stress that the only adjustable pa-
rameter in the fit is one relating to the absolute magnitude of
the scattering signal, and so the shape of the scattering curve is
fixed from the known particle shape. The fits and subsequent
analyses were made in the q range from 0.02 to 0.2 Å.

The equilibrium structure at zero shear rate was probed
for the two different concentration dispersions and in the two
detector planes. These equilibrium measurements, corrected
for the incoherent scattering cross section (Iincoh), which is ex-
tracted from the measurement, and normalized by the volume
fraction, are included in Fig. 2. Also included is a prediction
of the scattering intensity for the fd-virus, modeled as a cylin-
drical particle with the dimensions mentioned previously. We
find that the normalized equilibrium scattering from the sam-
ples in both the 1−2 and 1−3 planes are well described by this
scattering model, with no included structure factor, validating
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FIG. 2. 1D equilibrium SANS measurements and fits for the fd-
virus dispersions considered in this work. The measured intensities
are corrected for incoherent scattering and volume fraction extracted
from fits of the measurements. Measurements are included for the
concentrations (0.1 and 0.2 vol%) and measurement planes (1–2 and
1−3) as the open points of varying color where the error bars indicate
the standard deviation of the intensity from the SANS measurement.
The cylinder model considered for the fd-virus is included as the
black line.

its use in the following sections for all concentrations and
detector planes.

B. Parameter-free extraction of the 3D OPDF using MAPSI:
method validation

In the theory section, we described a method, MAPSI,
that can be used for determining OPDFs from experimental
measurements. To validate the method, we conduct numerical
simulations using the dilute particle theory to predict SAS

patterns in the 1−2, 1−3, and 2−3 measurement planes,
which are then used as an input to MAPSI. Utilizing predic-
tions from dilute theory with no added noise enables us to
assess the utility of MAPSI for accurately extracting OPDFs
free from the influence of nonidealities in the experimental
system or uncertainties in the measured scattering intensity.
Any deviation of the extracted OPDF from the OPDF used to
generate the scattering therefore represents errors introduced
from either the limited q-resolution in the predicted scattering
patterns or from MAPSI itself.

Numerical simulations of the OPDF for dilute rodlike par-
ticles matching the dimensions of the fd-virus in simple shear
flow were carried out as a function of rotational Péclet num-
ber, Per . The OPDFs were used with the validated fd-virus
scattering model to generate SAS predictions in the 1−3,
1−2, and 2−3 measurement planes with the same q range
and q resolution measured in experiments. The predicted SAS
patterns were then used as input to MAPSI to extract OPDFs.
Since MAPSI requires information about measurement errors,
the standard deviation of the intensity was set to 0.33I(q),
representative of the value of the standard deviation in the
SAS measurements. A smaller value was found to have no
observable effect on the inferred OPDFs.

Representative OPDFs for Per = 2, 7.5, and 30 are in-
cluded in Fig. 3, including the OPDF predicted from theory
and extracted from MAPSI using scattering from the 1−3
plane, 1−2 plane, both the 1−2 and 1−3 planes, and all
three planes. For all extracted OPDFs, as Per is increased, the
apparent OPDF becomes increasingly peaked. Importantly,
when comparing the OPDF extracted from all three scattering
planes simultaneously, we find that the full OPDF is nearly
quantitatively recovered, validating the MAPSI method. By
contrast, when an incomplete set of scattering projections
is used, the apparent most likely orientation [corresponding

1-21-3 + 1-2 + 2-3 1-3Theory
(ii) (iii)(i)

(ii) (iii)(i)

(ii) (iii)(i)

(a) 2

(b) 7.5

(c) 30

1-3 + 1-2
(iv)

(iv)

(iv)

(2)
(3)

(1)

N(p)

N(p)

N(p)

(v)

(v)

(v)

Per

FIG. 3. Representative 3D OPDFs (i) simulated from dilute theory and extracted from MAPSI using theory-predicted scattering in the (ii)
1−2, 1−3, and 2−3 planes, (iii) 1−2 and 1−3 planes, (iv) 1−2 plane and (v) 1−3 plane. For the 1−3 scattering, the incident radiation is in
the ∇u (2) direction; for the 1−2 scattering, the incident radiation is in the ω (3) direction; and for the 2−3 scattering, the incident radiation
is in the u (1) direction. The representative results are included for Per = (a) 2, (b) 7.5, and (c) 30. The color on the unit sphere represents the
value of the OPDF in a particular direction in the u, �u, and ω reference frame specified in the bottom left corner. The black lines on the unit
sphere indicate the edges of the hat functions used to discretize the OPDF.
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to the peak in N(p)] depends on the measurement planes
utilized. For 1−3 plane measurements, the most likely ori-
entation coincides with the flow direction, about which the
OPDF is symmetric, whereas for 1−2 plane measurements it
lies slightly away from the flow direction toward the gradient
direction, which is expected from the dilute theory. Addi-
tionally, the OPDF extracted from the 1−2 plane scattering
is broadened along the vorticity direction compared to that
extracted from 1−3 plane scattering. For the extractions com-
bining measurements (1–3 + 1−2 and 1−3 + 1−2 + 2−3),
the axis of symmetry of the OPDF is tilted into the gradi-
ent direction similar to the 1−2 plane, yet is more weakly
broadened in the vorticity direction than for the former case.
When comparing the OPDF extracted from the 1−2 and 1−3
scattering to the theory-predicted OPDF, we find that the peak
location in N(p) is accurately captured, while its value is
underestimated, which we attribute to the spreading of prob-
ability in the vorticity direction compared to the underlying
OPDF. For several of the OPDFs we also note the presence
of “ridges,” most significantly along ω = 0. We attribute
the presence and locations of these ridges to regions of the
OPDF where the included SANS measurements provide little
information. In other words, these regions correspond to areas
where the particle is perfectly aligned or just off alignment
from the plane of measurement. Since we are not probing
a q-range corresponding to the full length of the particle, it
can be expected that such regions would exist in the OPDF.
We do not observe such ridges in the OPDFs determined
from experimental measurements, and therefore attribute the
absence of ridges to the regularizing effect of measurement
uncertainty.

We now summarize the effects of utilizing scattering from
different detector planes (i.e, projections of structure) on the
extracted OPDF relative to that extracted using all three de-
tector planes. For OPDFs extracted from the 1−3 plane only,
the OPDF is broadened along the flow gradient direction, and
the most probable orientation always lies exactly in the flow
direction. For the OPDF extracted from the 1−2 plane scat-
tering, the OPDF appears to be broadened along the vorticity
direction, and the most probable orientation shifts from 45 °
between the flow-flow gradient directions at low shear rates to
nearly the flow direction at high shear rates. Both results are
due to the loss of out-of-plane orientational information when
restricting analysis to a single scattering projection plane. We
suggest that this occurs because the form factor when qz = 0
(where z is the direction of incident radiation) is symmetric
with respect to � = 0, where � is the orientation of the
particle out of the plane of measurement. Qualitatively, one
can understand this effect as analogous to projections in real-
space measurements, where particle orientations in the ±�

direction cannot be distinguished. In the case of the 1−3
plane scattering, � = φ and qz = q∇u, which leads to the
measured symmetry about the flow direction in the extracted
OPDF because one cannot distinguish between orientations in
the ±φ direction. Finally, OPDFs extracted from 1−3 + 1−2
scattering planes appears to have artificially smoothed fea-
tures, but do not qualitatively differ from the case where all
three planes are used. We conclude that accurately resolving
the full OPDF from SAS requires measurement and analysis
of at least two different detector planes.

The preceding analysis qualitatively demonstrates the loss
of information regarding the 3D OPDF generally incurred
by an analysis of anisotropic scattering when analysis is
restricted to a single scattering plane. A more quantitative
analysis of this information loss can be assessed by examining
various scalar moments of the OPDF. Given that MAPSI
accurately resolves the full OPDF, one could theoretically
calculate moments of the OPDF (and propagated errors of
such moments) to arbitrarily high order. Here, we restrict the
analysis to include only the second and fourth moments of the
distribution, S and S(4). As mentioned previously, these mo-
ments are required to determine various material properties,
such as the particle contribution to the mechanical stress in
force-free orientable particle systems [12].

The results for the nonzero components of the second mo-
ments, S, are included in Fig. 4. We show results including
scattering measurements in single detector planes (the 1−2
and 1−3 planes), in both the 1−2 and 1−3 planes, and in three
orthogonal planes (1−2 + 1−3 + 2−3) for q in the range
from 0.02 to 0.2 Å, which corresponds to that available in
the experiments. We see that the agreement for the diagonal
components of S obtained via MAPSI and the exact results is
excellent in cases where multiple projection planes are used.
The only modest disagreement is for S12, where the peak
values obtained via MAPSI are smaller and there appears to
be a slight shift toward smaller values of Per , both for the two-
plane and three-plane cases. The three-plane result is clearly
better than the two-plane result, though both cases show errors
of similar magnitude. The main reason why the 3-plane result
still shows a difference from the exact result for S12 is that the
data are restricted to a limited q-range for this comparison,
in an attempt to capture experimental conditions. Of course,
for the dilute suspension case that we are considering in this
section, we can calculate the scattering patterns for arbitrary q,
and then explore how the results from MAPSI would change
if we had data for a wider range of q. One example where the
q range is extended to include 0.002 to 0.2 Å is included in
Fig. 4. The agreement between the MAPSI extracted moments
and the dilute theory clearly demonstrates that a very accurate
result could be achieved if data were available over a wider
range of q. The components of S define a first approximation
of the shape of the OPDF in the form of an ellipsoid. At
equilibrium, the shape is a sphere (the diagonal components
are nonzero and equal while the off-diagonal components are
zero). The first departure is a distortion in the principle straight
direction (S12 > 0), followed by elongation of the ellipsoid
and rotation toward the flow axis. The fact that the peak
in S12 is underestimated means that the OPDF obtained via
MAPSI shows somewhat less alignment and distortion in the
direction of the principle strain-rate axis than actually occurs.
According to Eq. (6), this would produce an underestimate
of the shear viscosity at Per of O(10) if we used the OPDF
obtained via MAPSI.

Due to tensor symmetries and the symmetry of the shear
flow field, there exist nine unique, nonzero scalar components
for the fourth-order tensor, S(4) (Fig. 3). While other studies
have resolved the diagonal components of the second mo-
ment tensor with measurements in multiple detector planes
[47], to our knowledge, the current work represents the first
means of measuring the off-diagonal terms for nonspherical
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FIG. 4. Components of the second moment tensor, S, calculated from simulations of the dilute rod theory (black lines) and calculated from
OPDFs extracted from MAPSI using theory predicted scattering (points) at varying Per . Components of the moment tensor extracted using
MAPSI include results using data from different scattering projections included: 1−2 plane only (up-pointing red triangles with right side
filled), 1−3 plane only (down-pointing blue triangles with left side filled), using both 1−2 and 1−3 plane scattering (purple filled diamonds),
using 1−2 + 1−3 + 2−3 plane scattering (filled black circles) and using 1−2 + 1−3 + 2−3 plane scattering with an extended q-range (filled
gray circles). The error bars indicate the standard deviation of the value from posterior sampling where the standard deviation was taken to be
I (q)/3.

nanoparticles simultaneously utilizing multiple SAS projec-
tions, and therefore this necessitates a discussion of the
information about S(4) that is lost or gained from scattering
information in a particular plane. In order to facilitate this
discussion, the moments have been divided into the three di-
agonal components S(4)

1111, S(4)
2222, and S(4)

3333, the three symmetric
off-diagonal components S(4)

1122, S(4)
1133, and S(4)

2233, and the three
antisymmetric components S(4)

1112, S(4)
1222, and S(4)

1233.
For the diagonal components, S(4)

1111 increases whereas S(4)
2222

and S(4)
3333 decrease with increasing shear rate, regardless of the

data used in MAPSI (Fig. 5, first row). In the case of both
S(4)

1111 and S(4)
3333, we find that only including the scattering data

in the 1−3 or 1−2 measurement plane leads to a quantitative
underestimate compared to simultaneously using data from
both of these planes, which is more severe for measurements
in the 1−3 plane. For S(4)

2222, including only information from
the 1−3 plane yields a value that is quantitatively similar to
the result when both planes are included, while only including
the 1−2 plane measurement overpredicts S(4)

2222. For the diag-
onal components, including multiple planes in the analysis
significantly reduces these errors (with absolute errors less

than 0.04 and 0.008 when using the 1−2 and 1−3 planes or
the 1−2, 1−3 and 2−3 planes, respectively).

For the symmetric off-diagonal components of the moment
tensor (Fig. 5, second row), we find an increase followed
by a decrease in the values S(4)

1122 and S(4)
1133, while we find a

monotonic decrease in the value of S(4)
2233 with increasing shear

rate. For S(4)
1122, we find that only including the information

from the 1−2 measurement leads to a slight underestimation
of the value, while only including 1−3 measurement infor-
mation overestimates the value of the component compared
to utilizing all the measured intensities. For S(4)

1133, using only
1−3 plane information correctly infers the values while using
only 1−2 plane information leads to an overestimate. For
S(4)

2233, using only the 1−2 plane measurement tends to slightly
overestimate the value while using only the 1−3 plane cor-
rectly infers the value. Again, including information from two
or more planes leads to very small errors between the “true”
values and those estimated by MAPSI.

For the antisymmetric components of the moment tensor
(Fig. 5, third row), the S(4)

1112, S(4)
1222, and S(4)

1233 component
values increase and then decrease with increasing shear rate.
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FIG. 5. Components of the fourth moment tensor, S(4), calculated from simulations of the dilute rod theory (black lines) and calculated
from OPDFs extracted from MAPSI using theory predicted scattering (points) at varying Per . The component of the moment tensor is indicated
in the legend, where the four numbers correspond to the i, j, k and l indices for the moment. Components of the moment tensor extracted using
MAPSI include results using data from different scattering projections included: 1−2 plane only (up-pointing red triangles with right side
filled), 1−3 plane only (down-pointing blue triangles with left side filled), using both 1−2 and 1−3 plane scattering (purple filled diamonds),
using 1−2 + 1−3 + 2−3 plane scattering (filled black circles) and using 1−2 + 1−3 + 2−3 plane scattering with an extended q-range (filled
gray circles). The error bars indicate the standard deviation of the value from posterior sampling where the standard deviation was taken to be
I (q)/3.

For all of these components, only utilizing the information
from the 1−3 measurement leads to a severe underestimate for
these components, and only utilizing the information from the
1−2 measurement leads to a similar value of the components
as when both 1−2 and 1−3 plane measurements are used.
Again, in most cases using two or more planes significantly
improves the accuracy of estimates from MAPSI. However,
this is not true for S(4)

1112, even when including measurements
in the 1−2, 1−3, and 2−3 planes. However, when a wider q
range is included, MAPSI correctly predicts the value of S(4)

1112
and all components of the fourth moment tensor.

Overall, we find excellent quantitative agreement between
fourth moments determined from the known exact OPDF and
those obtained using MAPSI when two or three measurement
planes are used. As commented on previously, a general fea-
ture of the OPDFs inferred from measurements in a single
detector plane is a loss of information about the OPDF in

the out-of-plane direction. The clearest illustration of this
from the moment analysis is the severe underprediction of
values for the antisymmetric components from 1−3 plane
measurements. These antisymmetric components describe the
asymmetry of the OPDF around the velocity direction due
to the biaxial nature of the shear flow. From the full OPDF
[Fig. 3(ci)], we can directly observe this loss of asymme-
try. Furthermore, we have quantified the errors expected for
particular moments, which will be used in the analysis of
moments extracted from experimental data to follow. The
results for the second and fourth moments make it clear that
the accuracy in extracting moments improves further with
a wider q range, but such extended q ranges were logisti-
cally unrealizable for the dilute dispersions considered in this
work. Therefore, one must consider the potential errors arising
from sampling a limited q range. For now, we consider these
reported errors to be expected for each of the components
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FIG. 6. A comparison of OPDFs from (i) dilute theory to those inferred by MAPSI using (ii) dilute theory predictions of SANS in the 1−3
and 1−2 planes and (iii, iv) experimentally measured SANS of the fd-virus dispersions at 0.1 and 0.2 vol%. For the 1−3 measurement, the
incident radiation is in the ∇u (2) direction, while for the 1−2 measurement, the incident radiation is in the ω (3) direction. The representative
results are included for Per of (a) 0.94, (b) 1.9, (c) 7.5, (d) 15, (e) 30 (γ̇ = 16, 32, 128, 256, and 512 s−1, respectively). The color on the unit
sphere represents the value of the OPDF in a particular direction in the u, ∇u, and ω reference frame specified in the bottom left corner. The
black lines on the unit sphere indicate the edges of the hat functions used to discretize the OPDF.

from utilizing MAPSI with the measured q range relative
to the characteristic size of the particle considered in this
work.

C. Parameter-free extraction of the 3D OPDF for fd-virus
dispersions at φ/φ∗ ∼= 1 and 2

We now utilize MAPSI to extract the 3D OPDF from
experimental flow-SANS measurements under shear in the
1−2 and 1−3 planes of measurement for the two semidilute
fd-virus dispersions. A comparison of SANS patterns mea-
sured for the more dilute dispersion and predicted from the
dilute theory (Appendix A) shows that the SANS patterns
are qualitatively different from those predicted from the di-
lute suspension theory (see Figs. 10 and 11). Using MAPSI
will therefore enable us to directly quantify the aspects of
the OPDFs inferred from experiments that deviate from the
dilute theory. In the process, we explore the extent to which

particle interactions for semidilute fd-virus dispersions cause
the OPDF to deviate from that for the dilute limit.

MAPSI was used to extract OPDFs from SANS measure-
ments from Per = 0.06 (where no anisotropy was observed
in the measured patterns) to Per = 30 (where significant
anisotropy was observed). We therefore expect MAPSI to
infer isotropic OPDFs for smaller shear rates and more
anisotropic OPDFs with increasing shear rate. Figure 6(iii)
includes representative results for the fd-virus dispersions. We
also include the OPDF from the dilute theory [Fig. 6(i)] and
the corresponding inferred OPDF using MAPSI and predic-
tions of the scattering from the dilute theory in the 1−3 and
1−2 planes [Fig. 6(ii)]. Since the experimental measurements
were only made in the 1−3 and 1−2 planes, the latter rep-
resents what we would expect to infer from measurements if
the experimental system has the exact same structure as that
predicted from the dilute theory. At low Per and for all the
OPDFs, we find that the resulting OPDF is nearly isotropic
for all orientations, as expected for a dispersion at small Per .
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FIG. 7. Components of the second moment tensor, S, calculated from simulations of the dilute rod theory (black lines), simulations of the
modified D-B model (colored lines), and calculated from OPDFs extracted from MAPSI using experimentally measured scattering (colored
points) at varying Per . Concentrations of 0.1 vol% (blue) and 0.2 vol% (red) corresponding φ/φ∗ ≈ 1 and 2 are included. The solid black
points are moments extracted from MAPSI and dilute theory predictions of the scattering in the 1−2 and 1−3 planes (Fig. 4). The error bars
indicate the standard deviation of the value from posterior sampling.

As Per is increased, the OPDFs become increasingly peaked.
All three OPDFs show a similar direction of most probable
alignment, which shifts from 45 ° between the flow and gra-
dient directions to the flow direction with increasing Per . As
discussed in the previous section, the OPDFs inferred from
MAPSI using only scattering in the 1−2 and 1−3 planes have
maxima that are quantitatively smaller than the OPDF from
the dilute theory, which is clearer at higher shear rates.

We will now compare the OPDFs inferred using MAPSI
based upon the theoretically-predicted SANS patterns from
the dilute theory and the experimentally measured SANS
patterns for the fd-virus. When comparing the MAPSI in-
ferred OPDFs from theory and experiment, we find that those
inferred from experiments have a smaller maximum in the
OPDF than those inferred from theory. This difference is not
surprising, given the previous analysis of the differences in
the scattering patterns that were used to infer the OPDFs
(see Appendix, Figs. 10 and 11). Other than the differences
in the maximum value of the peak, we find few qualitative
differences between the two OPDFs, and the OPDFs dis-
play striking similarity overall. As previously mentioned, both
OPDFs begin to show deviations from uniformity at similar
Per (near 1). For all Per , both OPDFs have a similar shape
to the peak in the OPDF (probability is stretched more along

the vorticity direction than the gradient direction, and this
asymmetry increases with increasing Per). Comparing the ex-
perimental OPDF to the theory OPDF [Figs. 6(ii) and 6(iii)],
we note that probability is slightly more spread out in the
ω = 0 plane and slightly less spread out in the ∇u = 0 plane in
the experiment than in the theory. However, these differences
are difficult to resolve at this level. To assess the differences
between the OPDFs, we turn to an analysis of the moments of
the OPDFs, which will provide a quantitative description of
the differences in the structure between the dilute theory and
the experimental measurements of the fd-virus dispersion.

Again, we begin with the second moment tensor, S. The
results for the two experimental fd-virus dispersions are in-
cluded in Fig. 7, together with the exact results for the dilute
suspension, and for the dilute suspension inferred by MAPSI
from the calculated SAS patterns [see Appendix B] in sim-
ilar planes of measurement (1−2 + 1−3). Starting with the
diagonal components of S (S11, S22, and S33), we find that
the lowest concentration fd-virus is similar to the results for
the dilute suspension, but that there are significant differ-
ences for the more concentrated dispersion. In the latter case,
the component in the flow direction (S11) is larger between
Per ≈ 0.5 and 20 and departs from the equilibrium value at a
lower value of Per , while the components in the gradient (S22)
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and vorticity (S33) directions are smaller in this Per range.
Recalling that the second moments are related to the shape
of the OPDF, viewed as an ellipsoid, we see that the OPDF
is more elongated and oriented toward the flow direction and
flattened in the gradient and vorticity directions relative to
the predicted shape for a dilute suspension. Interestingly, the
values of the diagonal components are similar at high Per for
both experimentally measured dispersions. Larger differences
between experiment and theory are observed in the S12 com-
ponent, with the values very much reduced for Per greater than
O(1). While the two dispersions are similar in this regime,
the more concentrated dispersion deviates from both the dilute
suspension and from the lower concentration dispersion at sig-
nificantly lower Per . Both this result and the earlier departure
of S11 from its equilibrium value are indicative of the fact that
the relaxation time of the fluid is significantly increased as a
consequence of particle interactions.

An obvious question is whether the modified D-B model
for semidilute suspensions provide a better fit to the experi-
mental data. An indication of the answer is shown in Fig. 7
as a comparison between the experimental data, the dilute
suspension results, and predictions from the modified D-B
model for the components of S. For the symmetric compo-
nents of S, we find that the modified D-B model captures
the initial deviations from the dilute theory but fails to at
high shear rates. In particular, we find that the diagonal com-
ponents of S have concentration-independent values at the
largest measured shear rates (Per ≈ 30), while the modified
D-B model predicts that concentration will have a signifi-
cant effect at these shear rates. This result suggests that the
modified D-B model overpredicts the impact of interparti-
cle interactions when the particles are significantly aligned
to an extent that cannot be explained solely by the effects
of finite q-range sampling discussed previously. For the S12

component, the modified D-B model does not predict the
lower value measured at high shear rates (Per > 2). These
deviations are larger than those resulting from only using
measurements in the 1−3 and 1−2 detector planes, suggest-
ing that measurement errors are not a sufficient explanation
for the observed deviations. Therefore the way the modified
D-B model accounts for interparticle interactions does not
explain all the deviations between the measured and theoret-
ical value of S12, and new theoretical developments will be
needed to explain this measured result. One possible area for
improvement in the model is the expression for the diffusivity.
In particular, the modified D-B model interpolates between
small and high degrees of alignment, and it is possible that
this interpolation underpredicts how quickly the diffusivity of
the rods approaches the dilute limit with increasing particle
alignment. These measurements could be used to provide
more accurate interpolation between the near-equilibrium
diffusivity provided with the Doi expression and the fully
aligned diffusivity provided by the expression for dilute
rods.

As discussed in the previous section, an important addi-
tional quantitative description of the OPDFs may be achieved
through the calculation of the fourth moment tensor, S(4).
Figure 8 includes the components of the fourth moment ten-
sor with error propagated from the SANS measurement. We
also include the moments as predicted from the dilute theory

and moments extracted from the MAPSI inferred OPDFs
using dilute theory predictions for the scattering. We do not
include predictions from the modified D-B model, as the
model utilizes a closure approximation and does not make
predictions for the fourth moments of the OPDF. Detailed
investigations of the applicability and accuracy of closure
approximations in general will be the subject of future studies.
Due to the information lost from only using measurements in
the 1−2 plus 1−3 planes, the proper comparison between the-
ory and experiment is between the respective MAPSI inferred
moments.

For the diagonal and symmetric off-diagonal components
of S(4) over the whole range of Per , we find good agree-
ment overall between the moments derived from experiment
and theory. We do observe fluctuations in the values of the
experiment-derived moments at low shear rates, where the
value is expected to be nearly constant. We attribute these
fluctuating values to slight variations in the magnitude of the
scattering intensity between measurements, which affects the
single particle scattering model [i.e., �(�ρ)2VpP(q, p)] that
describes the system. In reality, the particle scattering model
validated at equilibrium will itself have errors, which should
also be propagated into the derived moments and standard
deviations of moments. Incorporating these types of uncer-
tainties is beyond the scope of this work, and these magnitudes
of variations do not affect the conclusions to follow.

The most notable deviations between the experiment and
theory occur at Per > 1, and this is particularly true for the an-
tisymmetric components. We will focus on two aspects of the
differences for only the 0.1 vol% dispersion, as the dispersion
at this concentration is better described by the dilute theory
than the 0.2 vol% dispersion. The two most notable deviations
are for several of the components of S(4) at Per = 30 and
deviations in the antisymmetric components (S(4)

1112, S(4)
1222, and

S(4)
1233) for all Per > 1. At Per = 30, the experiments yield a

larger value of S(4)
2222, S(4)

1122, and S(4)
2233 and a smaller value of

S(4)
1111, S(4)

1133, and the antisymmetric components. As noted pre-
viously, the onset of a Taylor instability is expected to occur
for a Newtonian fluid of similar viscosity and density as the
fd-virus dispersion when Per ≈ 13.5. The measurements at
Per ≈ 30 are well into the regime where one may expect such
an instability assuming Newtonian rheology. Additionally, the
presence of the associated vortices would likely produce less
significant alignment of the microstructure, leading to the
observed deviations in the moments. It is therefore possible
that the deviations at Per ≈ 30 are due to a Taylor instability.
For the antisymmetric components of S(4), the deviations of
experiment from theory occur at Per well below the expected
onset of this instability.

Above Per = 1, we find that the experimentally measured
antisymmetric moments are significantly lower than what is
predicted for a dilute suspension. We suggest that the dif-
ferences in these components may be due to the presence
of hydrodynamic and other interactions between rods. Im-
portantly, it appears that the only effect such hydrodynamic
interactions have is to modify the antisymmetric components
of S(4), while the other components of S(4) are very similar to
what is predicted by the dilute theory. We note further that the
antisymmetric components of S(4) are the three components

065601-13



PATRICK T. CORONA et al. PHYSICAL REVIEW MATERIALS 5, 065601 (2021)

0.0

0.1

0.2

0.3

0.4

0.5  1111, Dilute Theory
 1111, MAPSI Dilute Theory
 1111, MAPSI 0.1 vol%
 1111, MAPSI 0.2 vol%

 2222, Dilute Theory
 2222, MAPSI Dilute Theory
 2222, MAPSI 0.1 vol%
 2222, MAPSI 0.2 vol%

 3333, Dilute Theory
 3333, MAPSI Dilute Theory
 3333, MAPSI 0.1 vol%
 3333, MAPSI 0.2 vol%

0.00

0.02

0.04

0.06

0.08

0.10

 1122, Dilute Theory
 1122, MAPSI Dilute Theory
 1122, MAPSI 0.1 vol%
 1122, MAPSI 0.2 vol%

 1133, Dilute Theory
 1133, MAPSI Dilute Theory
 1133, MAPSI 0.1 vol%
 1133, MAPSI 0.2 vol%

 2233, Dilute Theory
 2233, MAPSI Dilute Theory
 2233, MAPSI 0.1 vol%
 2233, MAPSI 0.2 vol%

0.1 1 10 100
0.00

0.02

0.04

0.06

0.08
 1112, Dilute Theory
 1112, MAPSI Dilute Theory
 1112, MAPSI 0.1 vol%
 1112, MAPSI 0.2 vol%

0.1 1 10 100

 1222, Dilute Theory
 1222, MAPSI Dilute Theory
 1222, MAPSI 0.1 vol%
 1222, MAPSI 0.2 vol%

0.1 1 10 100

 1233, Dilute Theory
 1233, MAPSI Dilute Theory
 1233, MAPSI 0.1 vol%
 1233, MAPSI 0.2 vol%

FIG. 8. Components of the fourth moment tensor, S(4) computed for the OPDFs extracted from MAPSI (points) compared to the dilute
theory predictions (black lines) with varying Per . The component of the moment tensor is indicated in the legend, where the four numbers
correspond to the i, j, k, and l indices for the moment. Moments from SANS experiments with the fd-virus dispersion are indicated with the
open circles while moments from SANS predictions from the dilute theory are indicated with the closed diamonds. The error bars indicate the
standard deviation of the value from posterior sampling.

that contribute to S12, which suggests that hydrodynamic in-
teractions decreases this component of the second moment
tensor, while other components are not significantly affected.
Overall, a comparison of MAPSI extracted moments from
experiment and the dilute suspension theory enable the quan-
tification of the differences between the OPDFs.

D. Rheological characterization from scattering measurements

One important macroscopic property of the fd-virus dis-
persions is their rheological behavior. Here, we consider the
behavior for the shear viscosity, and the two principle normal
stress differences N1 and N2, based on Batchelor’s expression
for the stress in noninteracting particle dispersions and us-
ing the experimentally measured second and fourth moments
from the preceding section. These results are then compared
to the dilute theory, the modified D-B model and, in the case of
the shear stress, to values measured mechanically in a rheome-
ter. The comparison to the dilute suspension theory provides
a direct indication of the importance of particle interactions
on the structure of the fd-virus dispersions. The comparison

with rheological measurements of the shear stress explicitly
tests whether the stress expression for dilute systems due to
Batchelor is accurate for this range of particle concentrations.
Such an approach has previously been applied to studies of
suspensions of spherical particles to estimate the particle con-
tribution to the stress [66]. To our knowledge, this study is
the first to utilize scattering measurements to directly estimate
the particle contribution to the stress in elongated particle
suspensions, here enabled by the ability to estimate the full
OPDF of the material.

Figure 9 includes the rheological quantities as calculated
from the SANS estimates of the moments and Batchelor’s
expression for the stress, compared to the dilute theory, to
the modified D-B model and, in the case of the viscos-
ity, to rheological measurements for the fd-virus dispersions.
Figure 9(a) includes the particle contribution to the viscosity
normalized by the solvent viscosity and volume fraction of
particles, ηp/φ ηs . The dilute theory (black line) predicts
a constant viscosity at low shear rates and shear thinning
behavior beyond Per = 1 (i.e., γ̇ = 17 s–1). As mentioned
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FIG. 9. Rheological quantities (a) the particle contribution to the
viscosity, (b) the first normal stress difference, and (c) the second
normal stress difference for the fd-virus dispersions in simple shear
flow. The quantities are normalized by the solvent viscosity and the
volume fraction of particles. The open symbols represent values de-
termined using S and S(4) from MAPSI with Batchelor’s expression
for the stress tensor. The filled symbols are results from rheological
measurements of the viscosity. The colors indicate the dispersion
concentration including the dilute theory predictions of the scattering
(black) and the measured 0.1 vol% (blue) and 0.2 vol% (red) fd-
virus dispersions. Predictions from the dilute suspension theory are
included as the solid black line. Predictions from the modified D-B
model are included as the solid lines with colors corresponding to the
concentrations of the measured points. The error bars represent the
standard deviation of the measured quantity.

previously, the dilute theory prediction of ηp/ηsφ is indepen-
dent of concentration. The colored lines are the predictions
from the modified D-B model. Also included in this figure
is ηp/ηsφ as determined from the SANS measurements and
Batchelor’s expression for the stress. For the 0.1 vol% disper-
sion, the value of ηp/ηsφ obtained in this way nearly matches
that of the dilute theory for all shear rates. Furthermore, at
this concentration the modified D-B model predictions are
very close to those of the dilute theory. The exceptions are

at Per ≈ 0.5 and at moderate shear rates from Per ≈ 4 to 15
where the viscosity calculated from Batchelor’s theory and
moments inferred from SANS measurements is less than that
predicted from the dilute theory. Compared to the 0.1 vol%
dispersion, the 0.2 vol% dispersion shows similar behavior at
high shear rates. However, at low shear rates, the predicted
viscosities are greater than those of the 0.1 vol% dispersion,
and, in addition, the 0.2 vol% dispersion shows shear thinning
for all measured shear rates.

More striking, however, is that the rheological measure-
ments of the shear viscosity for both the 0.1 vol% and 0.2
vol% dispersions produce values that are much greater even
than the predictions from Batchelor’s expression using the
measured moments, especially at the lower shear rates. The
0.2 vol% dispersion again has a larger zero shear viscosity
than the 0.1 vol% dispersion and again shear thins over the
whole range of shear rates, whereas the onset of shear thin-
ning in the 0.1 vol% dispersion is similar to the predictions
from dilute theory as well as the values of calculated from
Batchelor’s theory and SANS measurements.

There are two additional observations worth mentioning.
First, the data for the dilute case with the moments estimated
from the theoretical scattering prediction via MAPSI are in
quite close agreement with the dilute and modified D-B model
predictions for low and moderate shear rates. Only for Per

values of order 10 or greater is there a difference between
these two sets of results. A final interesting observation is
that the values of ηp/ηsφ determined via the direct rheolog-
ical measurements nearly collapse onto both the dilute theory
prediction and the values calculated from Batchelor’s theory
and SANS measurements at the highest shear rates.

By comparing ηp/ηsφ determined from these various
methods, we gain several key insights into the physical
phenomena leading to the rheological response of fd-virus
dispersions and, to the extent these results can be generalized,
to other rodlike systems. Since the value of ηp/ηsφ calculated
from MAPSI and Batchelor’s expression is dependent on S12

and S(4)
1122 and as was found in the previous section, the values

of S(4)
1122 remain nearly constant for the range of shear rates

tested, the deviations in ηp/ηsφ between the 0.1 and 0.2 vol%
dispersions are mainly a result of differences in the values
of S12. By comparing the values of ηp/ηsφ determined from
SANS measurements, MAPSI and Batchelor’s expression to
those predicted from the dilute theory, we find that the mea-
sured contribution to ηp/ηsφ purely from particle alignment
effects is different than that predicted by the dilute theory in
two ways. Firstly, the dispersions at both concentrations have
lower ηp/ηsφ than that predicted by the dilute theory at high
shear rates, and the value of ηp/ηsφ at these high shear rates is
independent of concentration. This result suggests that at high
shear rates, the structure of the dispersions is independent of
concentration, which was previously revealed in the analysis
of S and S(4) in the previous section. Secondly, we find that
at low shear rates the predictions obtained for the 0.1 vol%
dispersion nearly match the dilute theory, while the 0.2 vol%
dispersion has a SANS-determined viscosity nearly half an
order of magnitude greater than the dilute theory. These two
concentrations represent values slightly below (0.1 vol%) and
above (0.2 vol%) the overlap concentration. Therefore, this
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nonlinear effect is likely a result of interparticle interactions
that become significant when particle lengths begin to overlap
resulting in different values of S12 and, therefore, ηp/ηsφ.

Finally, we compare ηp/ηsφ as measured with rheological
measurements to those determined with SANS measurements,
MAPSI and Batchelor’s expression. At low shear rates, the
rheological measurements of ηp/ηsφ are half an order of
magnitude greater than those determined with SANS at both
concentrations, suggesting that effects beyond simply the
orientation of fd-viruses are contributing to the viscosity.
However, at high shear rates, these values collapse onto one
another, suggesting that whatever effects increase the low
shear-rate viscosity are negligible at high shear rates. The
most likely possibility for the difference in viscosity between
the SANS predictions and the rheological measurements are
the presence of direct (i.e., excluded volume) or indirect (i.e.,
hydrodynamic) particle-particle interactions. Given that the
predictions based on Batchelor’s expression collapse onto the
measured viscosities at high shear rate, this suggests that ef-
fects from interparticle interactions are only significant at low
shear rates and are negligible at high shear rates. The modified
D-B theory suggests a contribution to ηp/ηsφ that is a function
of the aspect ratio and volume fraction of particles. If we
evaluate this extra contribution to the stress for the 0.1 vol%
and 0.2 vol% dispersions we find that it results in a 25% and
45% increase in the zero-shear viscosity, respectively, which
is much less than the observed increase by half an order of
magnitude. A likely explanation for the discrepancy is that
particle-particle interaction effects beyond excluded volume
interactions contribute to the increased viscosity, although we
do not have a reasonable explanation for what these effects
may be at this time.

We turn to the normalized first normal stress difference,
N1/ηsφ, which we compare between estimates from the
SANS measurements on the fd-virus, the dilute and semidi-
lute theories (which are again very similar), and the dilute
(Batchelor) stress expression with moments determined via
MAPSI [Fig. 9(b)]. Both the dilute theory and modified D-B
model predict a monotonic increase in N1/ηsφ with increasing
shear rate. Although this monotonic increase is also observed
for N1/ηsφ estimated by SANS from both the 0.1 vol% and
0.2 vol% dispersions, the values of N1/ηsφ are larger at low
and moderate shear rates, and this deviation increases with the
increase in concentration, similar to what was observed in the
low shear-rate viscosity. This suggests that a concentration-
dependent scaling of the shear rate (i.e., a concentration-
dependent rotational diffusivity) could collapse the values of
N1/ηsφ. For all shear rates, the higher concentration sample
has a larger value of N1/ηsφ for all shear rates, suggesting
interparticle interactions are driving nonlinearities in the con-
centration dependence of the first normal stress difference.

Finally, for the normalized second normal stress differ-
ence, N2/ηsφ, the same set of results are shown in Fig. 9(c)
as were just discussed for N1/ηsφ in Fig. 9(b). The dilute
theory and modified D-B model both predict a decreasing,
negative N2/ηsφ followed by a plateau value at Per ≈ 10
with increasing shear rate. Due to the measurement errors
largely stemming from using only the flow-gradient and flow-
vorticity measurement planes, the uncertainties on the values
of N2/ηsφ are much larger than for ηp/ηsφ or N1/ηsφ. How-

ever, to within this experimental uncertainty, the dispersions
at both concentrations appear to have single particle con-
tributions to the second normal stress differences that are
reasonably well described by the dilute theory. We note a
slight upturn in the average value of N2/ηsφ at high shear
rates, however due to the large error bars, we cannot conclu-
sively comment on this feature. It is possible that this upturn is
a result of a Taylor instability as was discussed in the previous
section.

To summarize the findings of this section, we determined
that MAPSI enables a novel comparison between theoretical
structure-stress relationships for elongated particle disper-
sions and mechanical measurements of the stress. It was found
that the “true” viscosity measured using rheometry was signif-
icantly larger than that determined by using the experimental
measurements of the moments of the OPDF (from SANS
measurements and MAPSI) and the Batchelor expression for
the stress. Although it is clear that Batchelor’s “dilute” expres-
sion for the stress is not adequate at the concentrations of the
fd-virus suspensions, the modified Dhont-Briels model makes
only a small correction to the dilute suspension theory at
these concentrations, and does not account for the deviations
we observe. A clear question remains as to the physics that
lead to this increase in measured viscosity and the additional
contributions to the stress due to particle interactions that may
explain this result.

V. CONCLUSIONS

In this work, we presented a general framework to model
SAS and extract anisotropic 3D orientation distributions for
nonspherical particles aligned by an externally imposed field.
For systems where the orientation distribution is known,
we presented explicit expressions for the form factor (i.e.,
intraparticle scattering) for arbitrary particle shapes and ori-
entation distributions. For systems where physical theories
for predicting the full OPDF do not exist, we proposed a
generalized Bayesian inference method, MAPSI, for infer-
ring the OPDF from scattering data that relies only upon
an orientation-dependent scattering model for the individual
scattering object. Results from MAPSI using simulated scat-
tering of dilute rod dispersions in shear flow were used to
evaluate the inaccuracies incurred when various projections of
the measured scattering and combinations thereof are used to
extract the full 3D OPDF. We generally find that at least two
projections of the scattering are required to extract accurate
OPDFs. When only one scattering projection is used, the
apparent OPDF broadens in the out-of-plane direction, owing
to an inability to resolve the differences in scattering from
particles oriented out-of-plane.

Next, the second and fourth moments of the OPDF were
calculated from the extracted OPDFs to enable a quantita-
tive comparison between OPDFs from SANS measurements
and theory. The second and fourth moments were chosen
as they represent a sufficient description of the OPDF for
the calculation of mechanical properties of force-free dis-
persions of nonspherical particles, and therefore provide a
clear route toward testing physical theories of such dispersions
and structure-property relationships [12]. OPDFs extracted
from measurements of a model rodlike particle dispersion at
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concentrations near the overlap concentration were compared
to the theory for dilute particles and the modified D-B model
including mean-field hard rod interactions between particles.
This comparison revealed deficiencies in the theoretical un-
derstanding of interparticle interactions between rods and
quantified the aspects of the structural evolution of such dis-
persions that have yet to be understood.

Finally, the ability to extract moments of the OPDFs in
combination with expressions relating the structure and stress
for rodlike particle dispersions enables the direct estimation
of rheological quantities based on components of the fluid
stress. The extracted rheological quantities were compared to
theory predictions and, in the case of the viscosity, rheological
measurements. For the case of the viscosity, the comparison
revealed that modern theories relating dispersion structure to
stress significantly underpredict the stress contributions aris-
ing from interparticle interactions.

The methods proposed in this work enable quantitative
extraction of the full 3D OPDF from SAS measurements,
so long as an orientation-dependent particle scattering model
can be derived. We speculate that the extension of MAPSI
to include other distribution functions (e.g., particle size or
shape distributions) may offer the ability to infer the structure
of a much wider range of systems such as, for example,
polydisperse or deformable systems where the different con-
stituents or states of deformation, respectively, adopt distinct
OPDFs. Overall, the ability to determine fourth moments of
the OPDF directly from experimental data provides a power-
ful new tool for testing theoretical structure-property relations
for anisotropic materials, and various closure approximations
they rely upon [12,36,39,40,67,68]. We anticipate that the
new tools provided by the current work will generate renewed
interest and scrutiny of these theories.
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APPENDIX A: FORWARD PREDICTION OF SAS
FOR A DILUTE DISPERSION

With the scattering model for the fd-virus dispersions vali-
dated at equilibrium, we can compare SANS predictions from
the combined scattering and orientational dynamics theory
with SANS measurements of the fd-virus dispersion. We ex-
pect that the OPDF for the more dilute, 0.1 vol% dispersion
can be somewhat described with the dilute rod theory, and
we will compare these SANS predictions with no adjustable
parameters to the experimentally measured SANS patterns for
the 0.1 vol% dispersion.

Figures 10 and 11 include the results comparing the SANS
from theory and experiment in the 1−3 and 1−2 planes re-
spectively. We focus the comparison to 3 representative Per

(2, 7.5, and 30). The included shear rates range from the onset
of discernable anisotropy in the SANS patterns to the highest
measured shear rate. For these shear rates, we have included
(i) the OPDF predicted from theory projected onto the surface
of the unit sphere in the reference frame of the flow, (ii) the
resulting SANS pattern predicted from the theory, (iii) the
experimentally measured SANS pattern, and (iv) the absolute
error or difference between these two patterns computed as
Idiff (q) = |Iexperiment (q) − Itheory(q)|.

For the 1−3 plane comparison (Fig. 10), we find excellent
agreement when comparing the SANS patterns from the the-
ory and experiments, both in the degree of anisotropy and the
q-range over which it occurs. The alignment of microstruc-
ture, which increases with increasing shear rate, produces
SANS patterns with higher intensity in the vorticity direction
(qω) and lower intensity in the flow direction (qu) for a similar
magnitude of q. The onset of this discernable anisotropy in
the SANS patterns occurs at Per ≈ 2. By analyzing the dif-
ference between the theory and experimental SANS patterns,
we find that such deviations are isotropic and random for a
majority of the q-range probed. The exception to this is at
the highest shear rate, Per ≈ 30, where we find larger dif-
ferences between theory and experiment at low-q and along
the qω direction. We will discuss potential reasons for the in-
creased errors at Per ≈ 30 later with the results from the 1−2
comparison.

For the 1−2 plane comparison (Fig. 11), we again find
good agreement when comparing the SANS patterns from the
theory and experiments. Like the 1−3 plane measurements,
we begin to observe anisotropy in the SANS patterns at Per ≈
2. Unlike the 1−3 plane measurements, the direction of min-
imum intensity (corresponding to the direction where most
of the rods are aligned) shifts from 45 ° in the flow-gradient
plane to 0 ° into the flow direction, in agreement with the
theory-predicted OPDF. Indeed, the direction and magnitude
of anisotropy in the scattering at high-q is captured well for
all shear rates measured. For all measured q, the differences
between the theory and experiment are larger in the 1−2 than
in the 1−3 measurements due to a larger standard deviation in
the measured intensity. Larger systematic differences between
theory and experiment are observed at low-q for the higher
shear rates. In particular, we observe that the theory overpre-
dicts the intensity along the direction of greatest anisotropy at
the higher shear rates, and the magnitude of the overprediction
increases with increasing shear rate.
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FIG. 10. Representative results of the 1−3 plane rheo-SANS experiments and theory predictions for Per of approximately (a) 2, (b) 7.5,
and (c) 30 corresponding to γ̇ = 32, 128, and 512 s−1, respectively. Included are the (i) dilute theory predicted orientation distribution function
(OPDF) relative to the real-space flow, gradient, and vorticity directions (u, �u, and ω, respectively), (ii) theoretically predicted SANS patterns,
(iii) experimental SANS patterns, and (iv) difference between these two patterns. The intensities and differences for the 2D patterns are on
logarithmic scales while the OPDFs are presented on a linear scale. The low-q cutoff and gap between detectors is indicated on the 2D patterns
in black.

APPENDIX B: ASSESSMENT OF SCATTERING
PARAMETERIZATION FOR EXTRACTING OPDFs

Despite the imperfect comparison between theory and
experiment, we can use these results to assess the quality
of information provided by previously-utilized analyses of
anisotropic scattering based on a single 2D projection and
its assumed relationship to the in-plane OPDF. To summa-
rize the discussion in the introduction and the more detailed
discussion in Ref. [15], one will typically either extract the
annular variation of intensity with angle with respect to the
detector, or calculate a scalar parameter characterizing the
anisotropy based on the annular variation of intensity. Either
of these methods is valid for assessing qualitative trends in
particle alignment. However, these methods will be intrinsi-
cally convoluted by the fact that one is measuring a projection
of the scattering onto a 2D plane. Furthermore, these methods
discard useful information about the microstructure’s OPDF
that relies on the dependence of the intensity on the mag-
nitude of q, which is lost in the averaging. We will now
assess whether such issues introduce systematic errors in the
estimation of the OPDF from scalar parameterizations of the
scattering anisotropy.

It is sometimes assumed that the annular variation in
the scattering intensity is proportional to the in-plane pro-
jection of the OPDF shifted by π radians due to a

Fourier transform of the scattering intensity distribution, i.e.,
I (θ, q∗) = αN (θ−π, φ = 0) for 1−3 plane measurements
and I (φ, q∗) = αN (φ−π, θ = π

2 ) for 1−2 plane measure-
ments, where I (θ, q∗) is the annular averaged scattering
intensity in some q range, q∗, and α is a proportionality
constant [13,23]. Alternatively, one can obtain a scalar pa-
rameterization of the annular variation by assuming that a
simple relationship with the second moment of the in-plane
OPDF exists (essentially assuming a similar equality be-
tween the scattering and in-plane OPDF as above). One such
parameterization is the alignment factor (A f ), defined as

A f (q∗) = −
∫ 2π

0 I (β, q∗) cos (2(β − β0))dβ∫ 2π

0 I (β, q∗)dβ
, (B1)

where β is the in-plane angle (i.e., θ or φ for 1−3 and
1−2 plane measurements respectively) and β0 is the direction
of most probable orientation. For measurements in the 1−3
plane, the alignment factor is sometimes assumed to be equal
to Sm where Sm = S11 − S33 for 1−3 plane measurements and
Sm = S11 − S22 for 1−2 plane measurements [25]. In other
words, it is assumed that A f (q∗), as a scalar parameterization
of the intensity, provides information about the corresponding
second moment of the OPDF. While we only show results
for this particular scalar parameterization of the intensity,
we expect that the conclusions reached for A f (q∗) will be
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FIG. 11. Representative results of the 1−2 plane flow-SANS experiments and theory predictions for Per of approximately (a) 2, (b) 7.5,
and (c) 30 corresponding to γ̇ = 32, 128, and 512 s−1, respectively. Included are the (i) dilute theory predicted orientation distribution function
(OPDF) relative to the real-space flow, gradient, and vorticity directions (u, �u, and ω, respectively), (ii) theoretically predicted SANS patterns,
(iii) experimental SANS patterns, and (iv) difference between these two patterns. The intensities and differences for the 2D patterns are on
logarithmic scales while the OPDFs are presented on a linear scale. The low-q cutoff and gap between detectors is indicated on the 2D patterns
in black.

independent of the precise scalar used (e.g., P2 or Herman’s
orientation parameter).

For this study, we averaged the predicted scattering in-
tensities over a q-range of 0.032 to 0.046 Å–1 to match a
previous study on fd-viruses [47]. Similar to this previous
study, we find that only α is affected by the choice in q∗, so
we did not consider the effect of changing q∗. Figures 12(a)
and 12(b) include, for the 1−3 plane and 1−2 plane mea-
surements respectively, a comparison of the experimentally
measured annular averaged intensity (points), the theoretically
predicted (solid lines) annular averaged intensity, and the in-
plane projection of the actual OPDF (dotted lines) for the
range of shear rates probed experimentally. As was found for
the direct comparison of scattering intensity at all measured
q, we find excellent agreement between the experiments and
the theoretical predictions for the annular averaged intensity.
When comparing the annular averaged intensity (the solid
lines) with the in-plane OPDF (the dotted lines), however, it
is clear that one cannot assume that the annular averaged in-
tensity provides a good approximation of the in-plane OPDF.
Both produce similar qualitative trends: increasing shear rate
leads to a more anisotropic variation in both the intensity and
the in-plane OPDF. Furthermore, the direction of maximum
alignment in the plane of measurement is consistent be-
tween the two curves. However, a quantitative proportionality

between the two does not hold. Clearly, estimates of the in-
plane OPDF based upon the annular averaged intensity are
subject to very significant error. Figures 12(c) and 12(d) in-
clude a comparison between the second moment of the OPDF
(dotted line), the experimentally measured A f (q∗) (points) and
the theoretically predicted A f (q∗) (solid line). As with the
comparison of the annular variation in scattering intensity, we
find that the qualitative trend in the second moment of the
OPDF is properly captured by A f (q∗). Indeed, both metrics
similarly capture regions of shear rate where the microstruc-
ture is not significantly aligned (Per < 1) and where align-
ment is noticeable (Per > 1). However, the values of A f (q∗)
deviate quantitatively. Assuming a quantitative equality, or
even proportionality, between A f (q∗) and Sm would lead one
to experimentally underpredict the overall order in the system
at high alignment, and overpredict the order at low alignment.

Taken together, these results suggest that there is a quan-
titative deviation in the presumed microstructural alignment
when equating annular scattering intensity variations with
the in-plane OPDF. Furthermore, no amount of proportional
shifting of A f will lead to quantitative agreement with the cor-
responding moment of the OPDF. We rationalize these results
by noting that a proportionality between scattering intensity
and OPDF intrinsically requires that the scattering amplitude
is a delta function of intensity in the orientation direction,
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FIG. 12. (a) Averaged scattering intensity, I(θ ,q*), as a function of annular angle θ within a q-range of 0.032 and 0.046 Å–1 for the 1−3
plane. (b) Averaged scattering intensity, I(φ,q*), as a function of annular angle φ within a q-range of 0.032 and 0.046 Å–1 for the 1−2 plane.
For (a) and (b), the colored points correspond to experimentally measured intensity for Per from 0.06 to 30 (purple to red), which corresponds
to shear rates from 1 to 512 s−1. The solid colored lines correspond to the theoretically predicted average scattering intensity at conditions
matching the experiments. The dotted colored lines are the in plane OPDF from the theory (i.e., φ = 0 or θ = π

2 for the 1−3 and 1−2 planes,
respectively). The value of α was chosen for each shear rate to have the value of αN (θ−π ) equal I (θ, q∗) or αN (φ−π ) equal I (φ, q∗) at the
minimum intensity. (c) and (d) Alignment factor (Af (q∗)) as a function of shear rate for the experimentally measured scattering (solid points)
and scattering predicted from the dilute rod theory (solid line). Included on the same plot (dotted line) is Sm = S11 − S33 or Sm = S11 − S22 for
the 1−3 and 1−2 planes, respectively, from the OPDF simulation.

regardless of the microstructure’s out-of-plane orientation. In
reality, the scattering amplitude (in this case, the form factor)
is a continuous function that depends on the out-of-plane
orientation. The fact that the function is continuous means
that the intensity contribution from a perfectly aligned mi-
crostructure will be spread out over an annular range, leading
to less anisotropy in the scattering intensity variation than in
the OPDF. It is possible that for distributions that are uniaxial
or with uniform probability in the out-of-plane direction, such

a relationship will be found to hold more precisely. However,
in general, any parameterization of anisotropic scattering will
potentially depend on the scattering model employed, the q
range used for the calculation, the q discretization in the
experiment and the degree to which the microstructure is
oriented out-of-plane. We conclude that one should not expect
a moment parameterization of the anisotropic scattering to
be directly proportional to the corresponding moment of the
OPDF.

[1] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids (Wiley, New York, 1987).

[2] R. G. Larson, The Structure and Rheology of Complex Fluids
(Oxford University Press, 1999).

[3] T. Zemb and P. Lindner, Neutron, X-Rays and Light. Scattering
Methods Applied to Soft Condensed Matter (North Holland,
2002).

[4] A. P. R. Eberle and L. Porcar, Curr. Opin. Colloid Interface Sci.
17, 33 (2012).

[5] P. T. Corona, N. Ruocco, K. M. Weigandt, L. G. Leal, and
M. E. Helgeson, Sci. Rep. 8, 15559 (2018).

[6] A. Bharati, S. D. Hudson, and K. M. Weigandt, Curr. Opin.
Colloid Interface Sci. 42, 137 (2019).

[7] P. W. Majewski, M. Gopinadhan, and C. O. Osuji, J. Polym. Sci.
Part B Polym. Phys. 50, 2 (2012).

[8] H. Löwen, J. Phys.: Condens. Matter 20, 404201 (2008).
[9] M. E. Helgeson, P. A. Vasquez, E. W. Kaler, and N. J. Wagner,

J. Rheol. 53, 727 (2009).

065601-20

https://doi.org/10.1016/j.cocis.2011.12.001
https://doi.org/10.1038/s41598-018-33514-8
https://doi.org/10.1016/j.cocis.2019.07.001
https://doi.org/10.1002/polb.22382
https://doi.org/10.1088/0953-8984/20/40/404201
https://doi.org/10.1122/1.3089579


BAYESIAN ESTIMATIONS OF ORIENTATION … PHYSICAL REVIEW MATERIALS 5, 065601 (2021)

[10] S. A. Rogers and M. P. Lettinga, J. Rheol. 56, 1 (2012).
[11] J. C.-W. Lee, K. M. Weigandt, E. G. Kelley, and S. A. Rogers,

Phys. Rev. Lett. 122, 248003 (2019).
[12] G. K. Batchelor, J. Fluid Mech. 41, 545 (1970).
[13] P. Davidson, D. Petermann, and A. M. Levelut, J. Phys. II

France 5, 113 (1995).
[14] G. Huang, Y. Wang, C. Do, Y. Shinohara, T. Egami, L. Porcar,

Y. Liu, and W.-R. Chen, ACS Macro Lett. 8, 1257 (2019).
[15] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevMaterials.5.065601 for more information in-
cluding a generalization of the calculation of form factor
scattering for arbitrarily oriented particles, a review of methods
for analyzing anisotropic SAS from soft materials, a summary
of rheological theories for suspensions of Brownian particles
and a more in-depth overview of MAPSI, which includes Refs.
[69–78].

[16] C. Burger, B. S. Hsiao, and B. Chu, Polym. Rev. 50, 91 (2010).
[17] G. R. Huang, Y. Wang, B. Wu, Z. Wang, C. Do, G. S. Smith,

W. Bras, L. Porcar, P. Falus, and W. R. Chen, Phys. Rev. E 96,
022612 (2017).

[18] G. R. Huang, Y. Wang, C. Do, L. Porcar, Y. Shinohara, T.
Egami, and W. R. Chen, J. Phys. Chem. Lett. 10, 3978 (2019).

[19] M. Liebi, M. Georgiadis, A. Menzel, P. Schneider, J.
Kohlbrecher, O. Bunk, and M. Guizar-Sicairos, Nature 527, 349
(2015).

[20] L. Porcar, D. Pozzo, G. Langenbucher, J. Moyer, and P. D.
Butler, Rev. Sci. Instrum. 82, 083902 (2011).

[21] A. K. Gurnon, P. D. Godfrin, N. J. Wagner, A. P. R. Eberle,
P. Butler, and L. Porcar, J. Vis. Exp. 84, e51068 (2014).

[22] P. H. Hermans, J. J. Hermans, D. Vermaas, and A. Weidinger,
J. Polym. Sci. 2, 632 (1947).

[23] A. J. Leadbetter and E. K. Norris, Mol. Phys. 38, 669 (1979).
[24] S. V. Savenko and M. Dijkstra, Phys. Rev. E 70, 011705 (2004).
[25] T. Rosén, C. Brouzet, S. V. Roth, F. Lundell, and L. D.

Söderberg, J. Phys. Chem. C 122, 6889 (2018).
[26] L. M. Walker and N. J. Wagner, Macromolecules 29, 2298

(1996).
[27] K. R. Purdy, Z. Dogic, S. Fraden, A. Rühm, L. Lurio, and S. G.

J. Mochrie, Phys. Rev. E 67, 031708 (2003).
[28] J. B. Hayter and J. Penfold, J. Phys. Chem. 88, 4589 (1984).
[29] L. Herbst, J. Kalus, R. P. P. May, H. Hoffmann, K. Ibel, H.

Thurn, J. Kalus, H. Thurn, K. Ibel, and R. P. P. May, Chem.
Phys. 103, 437 (1985).

[30] P. G. Cummins, E. Staples, J. B. Hayter, and J. Penfold,
J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
83, 2773 (1987).

[31] J. Kalus, H. Hoffmann, and K. Ibel, Colloid Polym. Sci. 267,
818 (1989).

[32] J. Penfold, E. Staples, and P. G. Cummins, in Am. Chem. Soc.
Polym. Prepr. Div. Polym. Chem. (1990), p. 98, https://inis.iaea.
org/search/search.aspx?orig_q=RN:23081406.

[33] E. Helfer, P. Panine, M. F. Carlier, and P. Davidson, Biophys. J.
89, 543 (2005).

[34] K. M. Weigandt, L. Porcar, and D. C. Pozzo, Soft Matter 7,
9992 (2011).

[35] S. Förster, M. Konrad, and P. Lindner, Phys. Rev. Lett. 94,
017803 (2005).

[36] E. J. Hinch and L. G. Leal, J. Fluid Mech. 76, 187 (1976).
[37] G. B. Jeffery, Proc. R. Soc. A Math. Phys. Eng. Sci. 102, 161

(1922).

[38] N. Kuzuu and M. Doi, J. Phys. Soc. Jpn. 52, 3486 (1983).
[39] J. K. G. G. Dhont and W. J. Briels, Colloids Surfaces A

Physicochem. Eng. Asp. 213, 131 (2003).
[40] C. Lang, J. Kohlbrecher, L. Porcar, A. Radulescu,

K. Sellinghoff, J. K. G. Dhont, and M. P. Lettinga,
Macromolecules 52, 9604 (2019).

[41] G. J. Ennis, A. Okagawa, and S. G. Mason, Can. J. Chem. 56,
2824 (1978).

[42] I. Kirchenbuechler, D. Guu, N. A. Kurniawan, G. H.
Koenderink, and M. P. Lettinga, Nat. Commun. 5, 5060
(2014).

[43] D. Kumar, A. Shenoy, S. Li, and C. M. Schroeder, Phys. Rev.
Fluids 4, 114203 (2019).

[44] M. P. Lettinga and J. K. G. Dhont, J. Phys.: Condens. Matter 16,
S3929 (2004).

[45] M. P. Lettinga, Z. Dogic, H. Wang, and J. Vermant, Langmuir
21, 8048 (2005).

[46] E. Barry, D. Beller, and Z. Dogic, Soft Matter 5, 2563
(2009).

[47] C. Lang, J. Kohlbrecher, L. Porcar, and M. P. Lettinga,
Polymers (Basel) 8, 291 (2016).

[48] C. Lang, J. Hendricks, Z. Zhang, N. K. Reddy, J. P. Rothstein,
M. P. Lettinga, J. Vermant, and C. Clasen, Soft Matter 15, 833
(2019).

[49] T. Maniatis, J. Sambrook, and E. Fritsch, Molecular Cloning
(Cold Spring Harbor Univ. Press, New York, 1989).

[50] S. R. Kline, J. Appl. Crystallogr. 39, 895 (2006).
[51] H. Brenner, Int. J. Multiph. Flow 1, 195 (1974).
[52] L. G. Leal and E. J. Hinch, Rheol. Acta 12, 127 (1973).
[53] G. K. Batchelor, J. Fluid Mech. 44, 419 (1970).
[54] J. Férec, M. Heniche, M. C. Heuzey, G. Ausias, and P. J.

Carreau, J. Non-Newtonian Fluid Mech. 155, 20 (2008).
[55] F. Folgar and C. L. Tucker, J. Reinf. Plast. Compos. 3, 98

(1984).
[56] M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2 Mol.

Chem. Phys. 74, 560 (1978).
[57] C. Lang and M. P. Lettinga, Macromolecules 53, 2662 (2020).
[58] M. Doucet, J. H. Cho, G. Alina, S. King, P. Butler, P. Kienzle,

P. Parker, J. Krzywon, A. Jackson, T. Richter, M. Gonzales, T.
Nielsen, R. Ferraz Leal, A. Markvardsen, R. Heenan, P. Juhas,
and J. Bakker, SasView version 3.1.2 (Version v3.1.2), Zenodo
(9 December 2015), http://doi.org/10.5281/zenodo.35065.

[59] B. Weyerich, J. Brunner-Popela, and O. Glatter, J. Appl.
Crystallogr. 32, 197 (1999).

[60] A. T. Holmes, Phys. Rev. B 90, 024514 (2014).
[61] R. T. C. Ju, C. W. Frank, and A. P. Gast, Langmuir 8, 2165

(1992).
[62] C. W. Groetsch, The Theory of Tikhonov Regularization for

Fredholm Equations of the First Kind (Pitman Advanced Pub.
Program, Boston, 1984).

[63] K. S. Silmore, X. Gong, M. S. Strano, and J. W. Swan, ACS
Nano 13, 3940 (2019).

[64] Y. Y. Kurihara and J. L. Holloway, Mon. Weather Rev. 95, 509
(1967).

[65] Y. A. Wang, X. Yu, S. Overman, M. Tsuboi, G. J. Thomas, and
E. H. Egelman, J. Mol. Biol. 361, 209 (2006).

[66] A. K. K. Gurnon and N. J. Wagner, J. Fluid Mech. 769, 242
(2015).

[67] J. J. Feng, G. Sgalari, and L. G. Leal, J. Rheol. 44, 1085
(2000).

065601-21

https://doi.org/10.1122/1.3662962
https://doi.org/10.1103/PhysRevLett.122.248003
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1051/jp2:1995117
https://doi.org/10.1021/acsmacrolett.9b00496
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.5.065601
https://doi.org/10.1080/15583720903503494
https://doi.org/10.1103/PhysRevE.96.022612
https://doi.org/10.1021/acs.jpclett.9b01418
https://doi.org/10.1038/nature16056
https://doi.org/10.1063/1.3609863
https://doi.org/10.3791/51068
https://doi.org/10.1002/pol.1947.120020608
https://doi.org/10.1080/00268977900101961
https://doi.org/10.1103/PhysRevE.70.011705
https://doi.org/10.1021/acs.jpcc.7b11105
https://doi.org/10.1021/ma951127p
https://doi.org/10.1103/PhysRevE.67.031708
https://doi.org/10.1021/j150664a030
https://doi.org/10.1016/0301-0104(86)80045-3
https://doi.org/10.1039/F19878302773
https://doi.org/10.1007/BF01410121
https://inis.iaea.org/search/search.aspx?orig_q=RN:23081406
https://doi.org/10.1529/biophysj.104.050245
https://doi.org/10.1039/c1sm06176c
https://doi.org/10.1103/PhysRevLett.94.017803
https://doi.org/10.1017/S0022112076003200
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1143/JPSJ.52.3486
https://doi.org/10.1016/S0927-7757(02)00508-3
https://doi.org/10.1021/acs.macromol.9b01592
https://doi.org/10.1139/v78-466
https://doi.org/10.1038/ncomms6060
https://doi.org/10.1103/PhysRevFluids.4.114203
https://doi.org/10.1088/0953-8984/16/38/011
https://doi.org/10.1021/la050116e
https://doi.org/10.1039/B822478A
https://doi.org/10.3390/polym8080291
https://doi.org/10.1039/C8SM01925H
https://doi.org/10.1107/S0021889806035059
https://doi.org/10.1016/0301-9322(74)90018-4
https://doi.org/10.1007/BF01635092
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1016/j.jnnfm.2008.04.004
https://doi.org/10.1177/073168448400300201
https://doi.org/10.1039/F29787400560
https://doi.org/10.1021/acs.macromol.9b02239
http://doi.org/10.5281/zenodo.35065
https://doi.org/10.1107/S0021889898011790
https://doi.org/10.1103/PhysRevB.90.024514
https://doi.org/10.1021/la00045a016
https://doi.org/10.1021/acsnano.8b07215
https://doi.org/10.1175/1520-0493(1967)095<0509:NIOANL>2.3.CO;2
https://doi.org/10.1016/j.jmb.2006.06.027
https://doi.org/10.1017/jfm.2015.128
https://doi.org/10.1122/1.1289278


PATRICK T. CORONA et al. PHYSICAL REVIEW MATERIALS 5, 065601 (2021)

[68] S. Dutta and M. D. Graham, J. Non-Newtonian Fluid Mech.
251, 97 (2018).

[69] M. E. Helgeson, M. D. Reichert, Y. T. Hu, and N. J. Wagner,
Soft Matter 5, 3858 (2009).

[70] Z. Wang, C. N. Lam, W. R. Chen, W. Wang, J. Liu, Y. Liu, L.
Porcar, C. B. Stanley, Z. Zhao, K. Hong, and Y. Wang, Phys.
Rev. X 7, 031003 (2017).

[71] R. S. Bay, Fiber orientation in injection-molded composites: A
comparison of theory and experiment, Ph.D. thesis, University
of Illinois at Urbana-Champaign, 1991.

[72] E. J. Hinch and L. G. Leal, J. Fluid Mech. 57, 753 (1973).

[73] M. Doi and S. Edwards, The Theory of Polymer Dynamics
(Oxford University Press, New York, 1986).

[74] W. Maier and A. Saupe, Z. Naturforsch. 13, 564 (1958).
[75] M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae,

Geosci. Model Dev. 6, 2099 (2013).
[76] K. Atkinson, J. Aust. Math. Soc. Ser. B. Appl. Math. 23, 332

(1982).
[77] A. Townsend, H. Wilber, and G. B. Wright, SIAM J. Sci.

Comput. 38, C403 (2016).
[78] T. A. Driscoll, N. Hale, and L. N. Trefethen (eds.), Chebfun

Guide (Pafnuty Publications, Oxford, 2014).

065601-22

https://doi.org/10.1016/j.jnnfm.2017.12.001
https://doi.org/10.1039/b900948e
https://doi.org/10.1103/PhysRevX.7.031003
https://doi.org/10.1017/S0022112073001990
https://doi.org/10.1515/zna-1958-0716
https://doi.org/10.5194/gmd-6-2099-2013
https://doi.org/10.1017/S0334270000000278
https://doi.org/10.1137/15M1045855

