000893818 001__ 893818
000893818 005__ 20210810182037.0
000893818 0247_ $$2doi$$a10.1063/5.0050942
000893818 0247_ $$2ISSN$$a1070-6631
000893818 0247_ $$2ISSN$$a1089-7666
000893818 0247_ $$2ISSN$$a1527-2435
000893818 0247_ $$2Handle$$a2128/28128
000893818 0247_ $$2WOS$$aWOS:000677512200001
000893818 037__ $$aFZJ-2021-02857
000893818 082__ $$a530
000893818 1001_ $$0P:(DE-HGF)0$$aChen, Y.$$b0
000893818 245__ $$aProbing nonlinear velocity profiles of shear-thinning, nematic platelet dispersions in Couette flow using x-ray photon correlation spectroscopy
000893818 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2021
000893818 3367_ $$2DRIVER$$aarticle
000893818 3367_ $$2DataCite$$aOutput Types/Journal article
000893818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626080287_21252
000893818 3367_ $$2BibTeX$$aARTICLE
000893818 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893818 3367_ $$00$$2EndNote$$aJournal Article
000893818 520__ $$aWe report experiments employing x-ray photon correlation spectroscopy (XPCS) to characterize the velocity profiles of complex fluids in Couette flow. The approach involves modeling the XPCS correlation functions obtained with the incident x-ray beam passing tangentially through the Couette cell gap at various distances from the inner wall. We first demonstrate the technique with measurements on a dilute colloidal dispersion in the Newtonian liquid glycerol, where the expected linear velocity profiles are recovered. We then employ the technique to map the shear-rate-dependent velocity profiles of a shear-thinning dispersion of nematically ordered Gibbsite platelets. The nonlinear velocity profiles of the Gibbsite dispersion include a narrow slip region adjacent to the outer wall and a band with small velocity gradient in the interior of the gap that evolves into a region increasingly resembling plug flow with increasing shear rate. Variations in the velocity profile along the vorticity direction indicate an instability in the interface between this region of small velocity gradient and a region of high velocity gradient near the inner wall. Analysis of the small-angle scattering patterns provides information about the spatial and temporal variations in the nematic order of the Gibbsite dispersion and their coupling to the velocity profile. Additional potential applications of this XPCS-based technique and comparisons with established methods for characterizing velocity profiles are discussed.
000893818 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000893818 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893818 7001_ $$0P:(DE-Juel1)188512$$aKorculanin, Olivera$$b1
000893818 7001_ $$00000-0002-2888-5379$$aNarayanan, S.$$b2
000893818 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, J.$$b3
000893818 7001_ $$00000-0002-3432-5044$$aRogers, S. A.$$b4
000893818 7001_ $$00000-0002-8924-1622$$aLeheny, R. L.$$b5
000893818 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b6$$eCorresponding author
000893818 773__ $$0PERI:(DE-600)1472743-2$$a10.1063/5.0050942$$gVol. 33, no. 6, p. 063102 -$$n6$$p063102 -$$tPhysics of fluids$$v33$$x1089-7666$$y2021
000893818 8564_ $$uhttps://juser.fz-juelich.de/record/893818/files/5.0050942.pdf$$yPublished on 2021-06-03. Available in OpenAccess from 2022-06-03.
000893818 909CO $$ooai:juser.fz-juelich.de:893818$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188512$$aForschungszentrum Jülich$$b1$$kFZJ
000893818 9101_ $$0I:(DE-HGF)0$$60000-0002-2888-5379$$aExternal Institute$$b2$$kExtern
000893818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich$$b3$$kFZJ
000893818 9101_ $$0I:(DE-HGF)0$$60000-0002-3432-5044$$aExternal Institute$$b4$$kExtern
000893818 9101_ $$0I:(DE-HGF)0$$60000-0002-8924-1622$$aExternal Institute$$b5$$kExtern
000893818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b6$$kFZJ
000893818 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000893818 9141_ $$y2021
000893818 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893818 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS FLUIDS : 2019$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000893818 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000893818 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000893818 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000893818 920__ $$lyes
000893818 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000893818 980__ $$ajournal
000893818 980__ $$aVDB
000893818 980__ $$aUNRESTRICTED
000893818 980__ $$aI:(DE-Juel1)IBI-4-20200312
000893818 9801_ $$aFullTexts