000893819 001__ 893819
000893819 005__ 20210930133538.0
000893819 0247_ $$2doi$$a10.1063/5.0048809
000893819 0247_ $$2ISSN$$a0021-9606
000893819 0247_ $$2ISSN$$a1089-7690
000893819 0247_ $$2ISSN$$a1520-9032
000893819 0247_ $$2Handle$$a2128/28121
000893819 0247_ $$2altmetric$$aaltmetric:106652746
000893819 0247_ $$2pmid$$a34241181
000893819 0247_ $$2WOS$$aWOS:000692825100003
000893819 037__ $$aFZJ-2021-02858
000893819 082__ $$a530
000893819 1001_ $$00000-0001-7494-5152$$aOpdam, J.$$b0
000893819 245__ $$aPhase stability of colloidal mixtures of spheres and rods
000893819 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2021
000893819 3367_ $$2DRIVER$$aarticle
000893819 3367_ $$2DataCite$$aOutput Types/Journal article
000893819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626079333_10312
000893819 3367_ $$2BibTeX$$aARTICLE
000893819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893819 3367_ $$00$$2EndNote$$aJournal Article
000893819 520__ $$aWe determined the phase boundaries of aqueous mixtures containing colloidal rod-like \textit{fd}-viruses and polystyrene spheres using diffusing-wave spectroscopy and compared the results with free volume theory predictions. Excluded volume interactions in mixtures of colloidal rods and spheres lead to mediated depletion interactions. The strength and range of this attractive interaction depend on the concentrations of the particles, the length $L$ and diameter $D$ of the rods and the radius $R$ of the spheres. At strong enough attraction, this depletion interaction leads to phase separation. We experimentally determined the rod and sphere concentrations where these phase transitions occur by systematically varying the size ratios $L/R$ and $D/R$ and the aspect ratio $L/D$. This was done by using spheres with different radii and modifying the effective diameter of the rods through either the ionic strength of the buffer or anchoring a polymeric brush to the surface of the rods. The observed phase transitions were from a binary fluid to a colloidal gas/liquid phase coexistence which occurred already at very low concentrations due to the depletion efficiency of highly anisotropic rods. The experimentally measured phase transitions were compared to phase boundaries obtained using free volume theory (FVT), a well established theory for calculating the phase behaviour of colloidal particles mixed with depletants. We find good correspondence between the experimental phase transitions and the theoretical FVT model where the excluded volume of the rod-like depletants was explicitly accounted for in both the reservoir and the system.
000893819 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000893819 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893819 7001_ $$0P:(DE-Juel1)141638$$aGuu, D.$$b1
000893819 7001_ $$00000-0002-6704-9007$$aSchelling, M. P. M.$$b2
000893819 7001_ $$00000-0001-8333-015X$$aAarts, D. G. A. L.$$b3
000893819 7001_ $$00000-0002-4096-7107$$aTuinier, R.$$b4
000893819 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b5$$eCorresponding author
000893819 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0048809$$gVol. 154, no. 20, p. 204906 -$$n20$$p204906 -$$tThe journal of chemical physics$$v154$$x1089-7690$$y2021
000893819 8564_ $$uhttps://juser.fz-juelich.de/record/893819/files/5.0048809.pdf$$yPublished on 2021-05-26. Available in OpenAccess from 2022-05-26.
000893819 909CO $$ooai:juser.fz-juelich.de:893819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141638$$aForschungszentrum Jülich$$b1$$kFZJ
000893819 9101_ $$0I:(DE-HGF)0$$60000-0002-6704-9007$$aExternal Institute$$b2$$kExtern
000893819 9101_ $$0I:(DE-HGF)0$$60000-0001-8333-015X$$aExternal Institute$$b3$$kExtern
000893819 9101_ $$0I:(DE-HGF)0$$60000-0002-4096-7107$$aExternal Institute$$b4$$kExtern
000893819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b5$$kFZJ
000893819 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000893819 9141_ $$y2021
000893819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893819 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2019$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-02$$wger
000893819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000893819 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000893819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893819 920__ $$lyes
000893819 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000893819 980__ $$ajournal
000893819 980__ $$aVDB
000893819 980__ $$aUNRESTRICTED
000893819 980__ $$aI:(DE-Juel1)IBI-4-20200312
000893819 9801_ $$aFullTexts