001     893819
005     20210930133538.0
024 7 _ |a 10.1063/5.0048809
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/28121
|2 Handle
024 7 _ |a altmetric:106652746
|2 altmetric
024 7 _ |a 34241181
|2 pmid
024 7 _ |a WOS:000692825100003
|2 WOS
037 _ _ |a FZJ-2021-02858
082 _ _ |a 530
100 1 _ |a Opdam, J.
|0 0000-0001-7494-5152
|b 0
245 _ _ |a Phase stability of colloidal mixtures of spheres and rods
260 _ _ |a Melville, NY
|c 2021
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626079333_10312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We determined the phase boundaries of aqueous mixtures containing colloidal rod-like \textit{fd}-viruses and polystyrene spheres using diffusing-wave spectroscopy and compared the results with free volume theory predictions. Excluded volume interactions in mixtures of colloidal rods and spheres lead to mediated depletion interactions. The strength and range of this attractive interaction depend on the concentrations of the particles, the length $L$ and diameter $D$ of the rods and the radius $R$ of the spheres. At strong enough attraction, this depletion interaction leads to phase separation. We experimentally determined the rod and sphere concentrations where these phase transitions occur by systematically varying the size ratios $L/R$ and $D/R$ and the aspect ratio $L/D$. This was done by using spheres with different radii and modifying the effective diameter of the rods through either the ionic strength of the buffer or anchoring a polymeric brush to the surface of the rods. The observed phase transitions were from a binary fluid to a colloidal gas/liquid phase coexistence which occurred already at very low concentrations due to the depletion efficiency of highly anisotropic rods. The experimentally measured phase transitions were compared to phase boundaries obtained using free volume theory (FVT), a well established theory for calculating the phase behaviour of colloidal particles mixed with depletants. We find good correspondence between the experimental phase transitions and the theoretical FVT model where the excluded volume of the rod-like depletants was explicitly accounted for in both the reservoir and the system.
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guu, D.
|0 P:(DE-Juel1)141638
|b 1
700 1 _ |a Schelling, M. P. M.
|0 0000-0002-6704-9007
|b 2
700 1 _ |a Aarts, D. G. A. L.
|0 0000-0001-8333-015X
|b 3
700 1 _ |a Tuinier, R.
|0 0000-0002-4096-7107
|b 4
700 1 _ |a Lettinga, M. P.
|0 P:(DE-Juel1)130797
|b 5
|e Corresponding author
773 _ _ |a 10.1063/5.0048809
|g Vol. 154, no. 20, p. 204906 -
|0 PERI:(DE-600)1473050-9
|n 20
|p 204906 -
|t The journal of chemical physics
|v 154
|y 2021
|x 1089-7690
856 4 _ |u https://juser.fz-juelich.de/record/893819/files/5.0048809.pdf
|y Published on 2021-05-26. Available in OpenAccess from 2022-05-26.
909 C O |o oai:juser.fz-juelich.de:893819
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)141638
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-6704-9007
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0001-8333-015X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-4096-7107
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130797
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2019
|d 2021-02-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21