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ABSTRACT

We determined the phase boundaries of aqueous mixtures containing colloidal rod-like fd-viruses and polystyrene spheres using diffusing-
wave spectroscopy and compared the results with free volume theory predictions. Excluded volume interactions in mixtures of colloidal rods
and spheres lead to mediated depletion interactions. The strength and range of this attractive interaction depend on the concentrations of the
particles, the length L and diameter D of the rods, and the radius R of the spheres. At strong enough attraction, this depletion interaction leads
to phase separation. We experimentally determined the rod and sphere concentrations where these phase transitions occur by systematically
varying the size ratios L/R and D/R and the aspect ratio L/D. This was done by using spheres with different radii and modifying the effective
diameter of the rods through either the ionic strength of the buffer or anchoring a polymeric brush to the surface of the rods. The observed
phase transitions were from a binary fluid to a colloidal gas/liquid phase coexistence that occurred already at very low concentrations due to the
depletion efficiency of highly anisotropic rods. The experimentally measured phase transitions were compared to phase boundaries obtained
using free volume theory (FVT), a well established theory for calculating the phase behavior of colloidal particles mixed with depletants.
We find good correspondence between the experimental phase transitions and the theoretical FVT model where the excluded volume of the
rod-like depletants was explicitly accounted for in both the reservoir and the system.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0048809

I. INTRODUCTION transitions from liquid to crystalline and to jammed glassy states

upon increasing sphere concentration have been observed.” The

Entropy-driven ordering at the colloidal length scale has been
well established' by theoretical,” simulation,™* and experimental
studies.”” Colloidal particles that interact exclusively via hard body
interactions offer relatively simple model systems for a statistical
mechanical description. A higher degree of complexity can then be
integrated into the simple models to take into account more intri-
cate particle-particle interactions. Highly mono-disperse sterically
stabilized spherical particles that mimic hard spheres can be synthe-
sized in a laboratory by following well established protocols.*” The
phase behavior of such systems has been intensively studied, and

observed phase behavior can be explained by considering that at
low volume fractions, maximum entropy is achieved in states having
disordered particle configurations. As the volume fraction increases,
the crystalline packing configuration facilitates more possible parti-
cle arrangements than the disordered states, and this, in turn, max-
imizes the entropy of the system. We thus have an ordering of a
colloidal system that is purely driven by entropy.

Such entropy-driven phase transitions also occur in colloidal
mixtures. Dispersions of colloids plus non-adsorbing polymers are a
class of systems of which the phase behavior is well-studied.'*!!!?
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In such mixtures, the non-adsorbing polymer chains induce an
effective attraction. This effective attraction between the spheres is
indirectly caused by the repulsion between the colloidal surfaces
and the non-adsorbing polymers, which leads to a zone that is
depleted of polymers around the colloidal spheres. When the par-
ticles come close enough for their depletion zones to overlap, an
unbalanced osmotic pressure mediated by the polymer chains results
in an attractive force, which is called the depletion interaction.
This polymer-mediated depletion interaction was first predicted by
Asakura and Oosawa'’ and then further developed by Vrij;' it is
discussed in detail elsewhere.'” For certain compositions of colloidal
mixtures, phase separation can lead to an increase in the free volume
available to each species. Above a certain threshold concentration,
the binodal, this increase in translation entropy is large enough to
compensate the entropic cost of demixing and a phase transition will
occur. The depletion induced attractive inter-particle force can lead
to equilibrium phase behavior, analogous to molecular systems,'®
albeit richer.

Besides polymers, non-adsorbing colloidal particles can also
be used to induce depletion forces. For this purpose, anisomet-
ric depletants are of special interest since they are highly efficient
at mediating an attractive potential between the colloidal particles.
This efficiency can be explained by considering the fact that the
effective volume occupied by the depletants is much larger than
the actual particle volume. Asakura and Oosawa already predicted
in the 1950s'*"” that for this reason, rod-like particles should be
very efficient depletants. This efficiency has been confirmed experi-
mentally with direct depletion potential measurements.'®>* More-
over, due to the shape anisotropy of rods, rod/sphere mixtures
have a very rich phase behavior. The topology of the phase dia-
gram depends on two size ratios, namely, £ = L/R and q = D/2R,
which are connected through the rod aspect ratio L/D. Here, L is the
length of the rod, D is the diameter of the rod, and R is the radius
of the colloidal spheres. Furthermore, rod-like particles can form
ordered structures, i.e., liquid crystals and columnar phases, at high
concentrations.”” >

Due to the richness of the phase behavior of rod/sphere mix-
tures, it is difficult to map the phase behavior as a function of
particle concentrations for all the different parameters of interest.
Some effort has been done in the literature to investigate regions
of the phase stability map of rod/sphere mixtures. Bolhuis and
Frenkel’® studied the phase separation of colloidal spheres mixed
with infinitely thin rods for different size ratios £ with Monte Carlo
simulations and perturbation theory. A strong effect of the size ratio
on the phase behavior was found, and for size ratios above & = 0.6,
an isostructural fluid/fluid coexistence region is present in the phase
diagram. These results for infinitely thin rods were later corrob-
orated by Schmidt”” using density functional theory. A finite rod
thickness can be taken into account with the relatively simple free
volume theory (FVT), which has proven to provide many insights
into the phase behavior of colloidal mixtures.”” Vliegenthart and
Lekkerkerker” used FVT to confirm the strong influence of £ on
the phase behavior of colloidal rod/sphere mixtures with finite thick-
ness. Furthermore, they showed that the aspect ratio of the rods
significantly affects the phase diagram through, for example, the
location of the fluid/fluid critical point. Oversteegen and Roth*’
described a general method for FVT with anisotropic depletants
using either scaled particle theory (SPT) or fundamental measure
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theory (FMT) to determine the free volume available for deple-
tants. They used this FVT framework to study the phase behav-
ior of spheres with rod-like depletants modeled as prolate ellip-
soids and also found a strong influence on the thickness of the
rods.

Experimental studies have also demonstrated the efficiency of
rod-like depletants. Vliegenthart et al’ and Koenderink et al.’’
studied mixtures of boehmite rods and silica spheres with & = 0.6 and
an aspect ratio of L/D = 26. They observed that beyond a certain rod
concentration, the spherical particles phase separated into a colloidal
fluid and a sphere-rich phase made up of crystallites. Oversteegen
et al’” found similar results for boehmite rods mixed with silica
spheres with & = 0.3 and an aspect ratio of L/D = 8. In both cases, the
phase separation occurred already at very low rod and sphere con-
centrations as predicted by FVT. Yasarawan and van Duijneveldt*”
studied mixtures of sepiolite clay-rods and silica spheres with & = 2.8
and an aspect ratio of L/D = 40, where Bolhuis and Frenkel*® pre-
dicted an isostructural fluid/fluid coexistence region. However, no
fluid/fluid demixing was observed, which is likely because of the high
concentration of rods in the samples that were already inside the
isotropic/nematic coexistence gap. One disadvantage of these exper-
imental systems was that the colloids were not density matched and
each particle species sediments rather quickly, and therefore, gravity
has an effect on the observed phenomena. To our knowledge, there
is a dearth of systematic experimental studies in the literature on the
bulk phase behavior in mixtures of colloidal rods and spheres. This
might be due to the reason that there is a lack of model rods that
are neutrally buoyant, having a narrow size distribution and a high
aspect ratio. Although, recently a procedure to synthesize buoyant
mono-disperse rods with a variable aspect ratio has been described.**

Another versatile colloidal rod-like model system that has
been investigated®>~’ is the semi-flexible filamentous fd-virus. The
viruses have an aspect ratio of ~130 and are charge stabilized at
values of pH > 4.2 due to the negative surface charge of the coat pro-
teins.”® In several studies, the fd-virus has been used to mediate an
attraction between single spherical particles and a fixed wall and to
determine the corresponding depletion potential.'®*’>* The equi-
librium phase behavior of mixtures of fd-viruses and polystyrene
spheres has been investigated by Adams et al.® for size ratios &
ranging from 6-80, obtained by using polystyrene spheres with dif-
ferent radii. In addition, in these experiments, the rod concentra-
tions used were either close to the I — N coexistence regime or were
already at relatively high rod volume fractions where the rods self-
assemble into highly ordered phases, and no fluid/fluid demixing
was observed. Guu et al.”” studied the effect of the rod thickness D
on the phase behavior of fd-viruses and polystyrene spheres by vary-
ing the effective rod thickness through changing the ionic strength.
The rod concentrations were much lower than in the experiments of
Adams et al. and the size ratio used was & = 3.5. Guu et al. observed
a transition from isotropic to an isostructural fluid/fluid coexistence
upon increasing rod concentrations, as predicted by FVT calcula-
tions.”” However, there was a big discrepancy between the onset of
phase separation predicted by FVT and the experimental results.
One of the reasons for this discrepancy is the fact that the used
FVT method does not accurately account for the excluded volume
of particle depletants.

In this paper, we will present a systematic study on the phase
stability of colloidal rod/sphere mixtures consisting of fd-viruses
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and density matched polystyrene spheres. We experimentally deter-
mined phase transition concentrations for size ratios & = L/R rang-
ing from 1.8 to 3.5. Moreover, we studied the effect of the thickness
of the rods on the location of the phase boundary. This was done by
altering the effective rod diameter through either changing the ionic
strength of the buffer or covalently attaching short poly(ethylene
glycol) (PEG) polymer chains onto the surface of fd-viruses. The
experimental observations are compared with FVT results. To this
end, we adjusted the original FVT approach to explicitly account
for the excluded volume of the rod-like depletants in both the reser-
voir and the system, as done recently for hard-sphere depletants by
Opdam et al.*’ The effective excluded volume of rods with a large
aspect ratio is very large due to their anisotropic shape, and we will
show that incorporating this excluded volume in FVT significantly
improves the theoretical predictions with respect to the experimen-
tal results. The FVT model used in this paper is introduced in Sec. I1.
We present the description of the rod/sphere system and the experi-
mental techniques used to determine the phase transition concentra-
tions in Sec. III. Experimentally determined phase boundaries and
the theoretical predictions are presented in Sec. I'V, and the results
are further discussed in Sec. V.

Il. FREE VOLUME THEORY

Free volume theory'>*! is a versatile tool used for the prediction
of the phase behavior of colloidal systems interacting via depletion
forces. Here, we outline the FVT method used in this paper, which
is based on previous work on binary hard-sphere mixtures*’ but
extended to take the anisotropic shape of rod-like depletants into
account.

A. Semi-grand potential

In the FVT model, there are two compartments: the system of
interest that contains colloidal particles and depletants and a hypo-
thetical reservoir containing only depletants. These compartments
are separated from each other through a membrane that is imper-
meable to the colloidal particles but is permeable to the depletants
and the solvent, which is treated as a background in FVT. The two
compartments are in osmotic equilibrium, and the thermodynamic
properties of the system are described by the semi-grand potential.
The experimental system of interest in this work is approximated
as a mixture of colloidal hard spheres (s) and hard rod-like deple-
tants (r) that only interact through excluded volume interactions.
The rods are described as spherocylinders; i.e., cylinders with length
L capped by hemispheres. The semi-grand potential of the system
with a certain volume V and temperature T containing N spheres
and N; rods is defined as

Q(Ns, V, To pr) = Fo(No, V, T) + f”’(aﬂ,) du!
oo\ Oz NLV,T

= Fy(N,, V, T) - [ﬂrNr(‘u;)d‘u;, 1)

where y_is the chemical potential of the rods and Fo(Ns, V, T) is
the Helmholtz free energy of the colloidal hard-sphere system in the
absence of rods. The number of rods in the system is not known
a priori and depends on the number of rods in the reservoir and the
number of spheres in the system. In order to obtain an expression for
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N, we will make use of the fact that the chemical potential y_is the
same in both the reservoir and the system since both compartments
are in osmotic equilibrium. Following Widom’s insertion theorem,*”
an expression for i can be written in terms of the work W needed
to insert a rod into the system,

N;
yr = const + kg T In v + W, (2)

with kg being the Boltzmann constant. For a system with only
excluded volume interactions, the non-ideal contribution can be
rewritten in terms of the free volume that is available in the system,
resulting in

Nr

phr = const + kg T In Ve’ (3)

where (Vi) is the ensemble averaged free volume. In previous FVT
studies on mixtures of rods and spheres, the rods were treated as
infinitely thin’® or the chemical potential of the rods was assumed
to be ideal and the volume that is excluded by the rod depletants
themselves is neglected in the free volume expressions for both the
reservoir and the system.”®?**° Here, we follow a FVT approach
where the excluded volume of the rod-like depletants is explicitly
accounted for, similar as was recently developed for binary hard-
sphere mixtures.”’ Using this FVT method, Eq. (3) can still be
applied to the chemical potential of the rods in the system; however,
(Viree) has to be determined for the binary colloidal rod/sphere sys-
tem. Moreover, Eq. (3) can also be applied to the chemical potential
of the depletants in the reservoir but now with ( Viee ) determined for
the reservoir containing only rods. Equating the chemical potentials
of the rods in the system and the reservoir then gives the following
expression for the number of rods in the system:

S
N, = N Vi) 4)

< Vfree ) R
where the indications R and S refer to the reservoir and the system,
respectively. A schematic representation of the equilibrium between
the reservoir and the system is shown in Fig. 1. For convenience, we
will use dimensionless quantities throughout the rest of this section,

which are defined as

G- 2V g BV g Vs
VkgT VkgT kg T )
~ u _ (Vfree> N;V;

l‘»:m, o= v > (/51':7,

where i denotes either component s or r, V; is the volume of compo-
nent 7, IT is the osmotic pressure, and « is the free volume fraction.
Using these definitions, Eqgs. (1) and (4) are rewritten as

~ = Vs Z I\ 3~
O-=T,- 7[: o (i2)) dis ©)
_ o ra(fs ¢r)
¢r = ¢y AR (7)

Combining Egs. (6) and (7) and applying the Gibbs-Duhem equa-
tion,
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Reservoir

FIG. 1. Schematic representation of FVT. The dashed black line represents a
semi-permeable membrane that cannot be passed by the colloidal spheres but
is permeable to the rods and solvent. The size ratios ¢ = D/2R and £ = L/R in
this scheme are 0.1 and 2.4, respectively, so the aspect ratio L/D equals 12.

Vs R~ 7R
— ¢, dpi; = dIT, 8
v, $r i (8)
gives the following result for the semi-grand potential:
% ek
~ ~ (04 81_[ R’
Q= Fop - / £ | d¢a - 9
k= Fox aR(8¢d) ba )]
0

Here, k denotes the phase state of the spherical particles, which is
assumed to be either a fluid or a face-centered cubic (FCC) crystal.
In this work, we focus on the isostructural fluid/fluid coexistence of
the spherical colloids, which occurs at the low density region of the
phase diagram. The free energy of the pure hard-sphere fluid can
be approximated from the Carnahan-Starling equation of state,*
resulting in

2 3

Fonua = ¢ [In(ge A/V,) 1] + 2730 (g
(1-¢5)?

where A is the de Broglie wavelength. For the range of reservoir con-

centrations used in this work, it is expected that the rod-like particles

do not form a nematic phase but behave as a fluid.”*** Therefore,

the scaled particle theory (SPT) result for a fluid dispersion of hard

spherocylinders® is used for the osmotic pressure in the reservoir,

Vol e men( e )1y (et )

I =— T+ =]+ =] |
Ve 1_¢r 3)’_1 1_¢r (3))_1)2 1_¢r

1m
where the parameter y is related to the aspect ratio of the rods,

L
=1+ =, 12
y=1+o (12)

with L and D being the length and diameter of the rods, respectively,
as shown in Fig. 1. The only unknown quantities left in Eq. (9) are
the free volume fractions available for the rods in the reservoir and
in the system.

B. Free volume fraction

The free volume fraction in a colloidal system is related to the
work W required to insert an extra particle into the system and is

ARTICLE scitation.org/journalljcp
given by
- exp(_kBﬂT). (13)

A general procedure to determine the work of insertion for hard
particles is through the use of scaled particle theory (SPT).*® In the
1970s, Cotter et al. developed a scaled particle approach to describe
the thermodynamic properties of a fluid of hard spherocylindrical
rods.”>*"~*” SPT has also been used to describe the free volume avail-
able to a rod-like depletant in a dispersion of hard spheres.”® Later, it
was shown that the free volume available for anisotropic depletants
in a dispersion of hard spheres can generally be described using SPT
or fundamental measure theory (FMT), which, in general, leads to
similar or more accurate results than SPT when compared to the
numerical results available for some anisotropic depletants with cer-
tain shape parameters.”” More recently, SPT was used to describe a
mixture of hard spheres and hard spherocylinders.”’ The SPT results
are applied here to describe the free volume fraction for rod-like
depletants in a rod/sphere mixture. A concise derivation of SPT for
mixtures of spheres and spherocylinders will be given in this section,
but for a more elaborate derivation, the reader is referred to the
original work.”’

The work of inserting a spherocylinder with length AL and
diameter vD in a system containing spheres and spherocylinders is
determined for the limiting cases A -0, v >0 and A > 1, v> L.
The case of interest with A =1, v =1 can then be determined by
connecting the two limiting cases through a Taylor series

W(A,v)_w W e W w +W()L>>1,v>>1)
ke W00 T WI0F Wor kWi Woz b e
(14)
where wp, are the terms of the Taylor expansion given by
1 [ 0 WA-0,v—>0
Wog = ( 2O p )
p'q!| ONOvi ksT A0

Higher order terms of the Taylor expansion are neglected and are
assumed to be described by the limit of large particle insertion, given
by the last term on the right-hand side of Eq. (14). In the limit
of small particle insertion (A - 0, v — 0), the depletion zones are
infinitely thin and the work of insertion is simply given by

W(A—0,v—0) v v
= — _In|l1- excl _ excl , 16
kB T n( ¢S Vs ¢T Vr ( )

where V3% and V57 are the orientationally averaged excluded vol-
umes of the spheres and the spherocylindrical rods with respect to
the inserted rod denoted as r2. These excluded volumes can be writ-
ten in terms of the volume V, the surface area A, and the integrated
mean curvature ¢ of all the particles involved” as given in Table I,
V2 2 Vi + Vs + cds + GAn, (17)

excl ~

Vo2 2 Vi 4 Viy + cAr + A, (18)

exc =

The last term on the right-hand side of Eq. (14) is determined
by the work to create a cavity for the inserted particle and is
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TABLE 1. Volume V;, surface area A;, and integrated mean curvature c; of component
i. Ris the radius of the spherical particles, D is the thickness of the rods, L is the length
of the rods, and A and v are the scaling parameters.

i Vi A; Ci
s R 47R? R
r ID*+ ID’L nD* + nDL Lyl
r2 %(VD)3 + g(vD)z()LL) n(vD)?* + m(vD)(AL) % +2

therefore related to the osmotic pressure TI° of the binary mixture
in the system,

WA>1Lv>1) VrZﬁS

kB T Vs (19)

Combining Egs. (14)-(19) and solving for A =1 and v =1 finally
yields the work of inserting a hard spherocylinder in a binary mix-
ture of hard spherocylinders and hard spheres with the total volume
fraction ¢ = ¢, + ¢,

WA=1v=1)

Vi =S
—II".
ke T

2
:—ln(1—¢)+a21?¢ +b2(%) + VS

(20)
An expression for the osmotic pressure of the binary system IIs can

also be obtained using scaled particle theory,”’ resulting in

TN P SN

+ -
r -¢ 2 (1-¢)* 3 (1-¢)°
(21)
In Egs. (20) and (21), the following coefficients are used:
¢s [1 6y 1 6y ]fbr
ar=6—+|— + = =, (22)
¢ Lq3y-1 ¢3(y+1)]¢

a = Bf(l +2q) +3q(1 + q)]% + [6 + 6()/_1)2]@ (23)

3y-1 | ¢
i)
e[l 38 (24
Bl,z—blgbsf;r&+bz(l—¢sf;r¥i), 27)
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where the two dimensionless parameters describing the size ratio
between the spheres and the rods are defined as

D
1= 7p’

L

&= R (28)
Combining Egs. (20)-(28) with Eq. (13) finally provides the free vol-
ume fraction « for a rod-like depletant in a colloidal system contain-
ing rods and spheres. The same equations can be used to find the free
volume fraction for depletants in the reservoir by taking ¢, = 0. Fur-
thermore, it is noted that the osmotic pressure of the binary mixture
given by Eq. (21) reduces to the osmotic pressure of a fluid disper-
sion of rods given by Eq. (11) when ¢ = 0. The model described here
reduces to the original FVT for rod/sphere mixtures® by setting the
volume fraction of rods in the reservoir and the system to zero in the
expressions for the free volume fraction. The expressions derived in
this section are only valid for the isotropic case; however, a similar
approach can be followed for a nematic phase by accounting for the
orientational distribution function of the rods.”” Another condition
for the expressions in this section is that the spherical particles form
a fluid phase since the osmotic pressure of the binary system given
by Eq. (21) no longer holds if the spheres order in a solid phase.
Moreover, it has been shown for penetrable hard-sphere depletants
that the SPT approach for the free volume fraction in the solid phase
becomes less accurate at higher packing fractions.”’

C. Phase coexistence calculations

Fluid/fluid binodals of the mixture of hard spheres and hard
rods are determined through the equilibrium conditions

=T, (29)
fi° = 1, (30)

where the superscript G denotes the colloidal gas phase and the
superscript L denotes the colloidal liquid phase. The chemical poten-
tial of the spheres and the osmotic pressure are related to the
semi-grand potential given by Eq. (9),

aQ
=5 , (31)
# (a‘/’s )ﬁR,V,T

M= ¢ % - Q. (32)

Fluid/fluid coexistence densities for specific size ratios g and £ were
determined by solving Egs. (29) and (30) with a numerical scheme.
First, the distribution of the rod-like depletants between the reser-
voir and the system is numerically determined by solving Eq. (7)
for a range of reservoir volume fractions ¢r. The resulting data are
interpolated and used as input to determine  for a given volume
fraction of spherical particles ¢, and a given ¢;. These steps are
repeated for a range of sphere volume fractions, and again, inter-
polation was used to obtain O as a function of ¢, which is used
as input for Egs. (29)-(32). Binodals are finally obtained by repeat-
ing this scheme for different values of ¢, which can be converted
to the volume fraction of rods in the system ¢ using Eq. (7). All
calculations are done using Wolfram Mathematica 12.
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I1l. SYSTEM DESCRIPTION AND EXPERIMENTAL
TECHNIQUES

A. Preparing mixtures of polystyrene spheres
and fd-viruses

The model system was chosen such that we could vary the size
ratios £ = L/R and q = D/2R between the sphere and the rod as well
as the aspect ratio L/D. The size ratios were varied by using spheres
with different radii, and the aspect ratio was varied by changing
the effective diameter of the rods through modifying the interac-
tion potential between the particles. As colloidal spheres we used
polystyrene spheres purchased from Thermo Scientific with a refrac-
tive index of 1.58. As their density is 1.05 mg/ml, they can be made
neutrally buoyant using a buffer with a suited D,O/H,O mixture.
See Table II for the used sizes and corresponding polydispersities.

The spheres were concentrated by centrifugation and redis-
persed in a TRIS-HCI buffer at pH = 8.3. The ionic strength of
the buffer was set by adding NaCl to reach a total ionic strength of
25 mM or 100 mM, which gives a Debye length x™' ~ 2 or 1nm,
respectively. The polystyrene spheres carry a negative surface charge
due to ionizable sulfate groups. We determined the concentration of
the polystyrene spheres by drying the spheres in a vacuum oven and
then measuring the dry weight of particles.

The fd-viruses are highly mono-disperse (contour length of
0.88 ym and a diameter of 6.6 nm) due to the fact that fd essentially
clones itself using the biological machinery of the host bacterial cells.
As the persistence length is [, ~ 3.0 ym, the fd-virus can be consid-
ered as a semi-flexible rod. The fd-virus was obtained following the
protocol outlined by Sambrook et al.”” The fd was dispersed in a
10 mM TRIS-HCI buffer at pH = 8.3 set at ionic strengths of 25
and 100 mM. The virus concentration is measured by UV-VIS usin§
an empirically determined extinction coefficient™ of 3.84 mg cm™
at 269nm. At a pH > 7 and the ionic strength at which fd was
suspended, the rods carry an estimated linear charge density”* of
10-20 e/nm. Due to the surface charge, the rods exhibit a long range
soft repulsion superimposed on top of the hard body interactions.
The electrostatic repulsion between the rods is given by

Ua(x) Te (D)
keT ~ sin(B) ’

(33)

where x is the separation distance between two rods, I' is a constant
resulting from the solution of the Poisson-Boltzmann equation, f3
is the orientation of one rod with respect to another, and «™" rep-
resents the Debye length.”” In theoretical descriptions of the phase
behavior, fd can be described as a hard rod with an effective diam-
eter D, which is larger than the bare fd diameter of 6.6 nm due to
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the range of the electrostatic repulsion. We assume that the effec-
tive length of the rods and the effective radius of the spheres are
not affected by the range of the electrostatic repulsion since the
Debye length is very small compared to L and R. Def can be deter-
mined empirically from the plot of the isotropic-nematic coexistence
concentrations vs the ionic strength. The resulting effective diam-
eters are Deg ~ 14nm and 11 nm at a buffer ionic strength of 25
mM and 100 mM, respectively.”**° Given the molecular mass of the
fd-virus of 1.64 - 10” g/M, the number density can be calculated and,
combined with D and the length L, also the volume fraction of
rods ¢ .

The long ranged repulsion of the fd-virus can be suppressed
by modifying the surface properties of the rods. This was done
by covalently attaching short poly(ethylene glycol) (PEG) polymer
chains onto the coat proteins of the virus.”” In the protocol, the end-
functionalized PEG is attached onto the N-terminal end of virus coat
proteins. Since the PEG used is electrically neutral, the polymer-
coated rods interact predominantly via the steric repulsion depend-
ing on the surface density coverage by the linear polymer chains
and on the ionic strength of the buffer. At an ionic strength of
25 mM, the surface charges lie completely within the PEG chains
and are thus shielded. The effective rod thickness D is now deter-
mined by the radius of gyration Ry of the polymer coils attached on
the surface of the rod. As in the uncoated fd case discussed above,
D, can be obtained from the plot of isotropic-nematic coexistence
concentrations, which gives Deg ~ 19 nm.

We prepared state-points in the phase diagram by mixing the
desired rod/sphere concentrations diluted from the respective stock
solutions. Both fd-viruses and polystyrene spheres were dispersed in
buffered H,O/D,O mixtures. The spheres remained stable in solu-
tion, and sealed samples of the micro-sphere stock solution did
not show any sedimentation over a period of several months. The
rod/sphere mixtures are highly turbid upon mixing due to a mis-
match of the buffer refractive index (npuser  1.33) compared to that
of the polystyrene spheres (fgpheres & 1.6).

B. Experimental methodology

The stability of the fd/sphere dispersions was tested by
diffusing-wave spectroscopy (DWS). DWS was used to determine
the rod concentrations where clustering is first observed, exploiting
the fact that this method is developed for application in dispersions
where multiple scattering occurs. DWS also has the advantage that
it is highly sensitive to small changes in the turbidity of the col-
loidal dispersion. DWS was performed in transmission geometry. A
quartz cuvette of 1 mm optical path length containing the sample
was illuminated by a Spectra-Physics BeamLok 2060-06S Argon ion
laser at a wavelength of 514.5 nm, and the transmitted light through

TABLE II. Physical properties of the polystyrene particles used to vary the size ratio & in the rod/sphere mixtures. Refractive

indices were measured at a laser wavelength of A = 589 nm.

Catalog No. 3495A 3600A 3700A 4009A
Mean diameter 496 + 8 nm 600 + 9 nm 707 £ 9 nm 994 + 10 nm
Density 1.05 g/cm3 1.05 g/cm3 1.05 g/cm3 1.05 g/cm3
Refraction index 1.58 1.58 1.58 1.58
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the sample was captured by an optical fiber and detected by an
ALV single photon avalanche diode. An ALV-6010/160 multiple-tau
correlator was used to compute intensity correlation functions.

The samples were mounted into the setup, directly after
homogenizing the mixture by vortexing. Correlation functions were
measured every 30 s until the system reached steady state. In stable
mixtures, i.e., mixtures in which no phase separation occurred, the
measured correlation functions did not change in time. In the case
of phase separating mixtures, the characteristic relaxation time of the
measured correlation functions increased as the mixture phase sep-
arated. Representative time evolution plots of correlation functions
measured during an experiment are shown in Fig. 2(a) in the case of
a stable mixture and in Fig. 2(b) in the case of a demixing rod/sphere
dispersion. In classical diffusing-wave spectroscopy,”® one defines a
photon transport mean free path I*. I* is used as a fitting param-
eter of the measured auto-correlation functions. In our case, this
characteristic length is ill-defined since in phase separating mix-
tures, there is a large distribution of cluster sizes and the turbidity
changes as a function of time. We therefore fit the measured cor-
relation functions by a stretched exponential function, yielding a
single relaxation time 7. In Fig. 2(c), we plot the fitted 7 as a func-
tion of time for two mixtures. We observe a clear difference between
a sample with ¢_ = 0.0090, for which 7 remains stable, and a sample
with ¢, = 0.0099, for which 7 immediately increases. Thus, the phase
transition point lies between these two rod concentrations. All the
experimental phase transitions measured here are liquid-liquid-like,
as determined with confocal laser scanning microscopy in a similar
fashion as discussed in a previous paper.*

IV. RESULTS

In this section, we compare the experimentally observed phase
stability transitions to the theoretically determined binodals for

| @
107"

= . — 120 mins
510 . — 60 mins
10_3; 30 mins m
| 0 mins l
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varying size ratio & and effective rod thickness Deg. For this pur-
pose, we only show the part of the theoretical binodals related to the
volume fractions that were experimentally investigated. The full bin-
odals including the liquid branch and the critical points can be found
in Appendix B.

A. Phase boundaries as a function of size ratio &

We first study the effect of the size ratio & on the location of
the phase stability boundary, varying & from 1.8 to 3.5 at an effec-
tive jonic strength of 25 mM, as plotted in Fig. 3. The solid symbols
represent the highest volume fraction of rods, ¢, for which the mix-
ture is stable, at a given ¢,. The open symbols represent the lowest
¢, measured where the system will phase separate. The solid curves
are the results for the binodals as determined with the free volume
theory discussed in Sec. IT and the dashed lines show the binodals
from original FVT of Vliegenthart and Lekkerkerker.”® The loca-
tion of the binodal line shifts to higher rod volume fractions ¢_ as
& increases, as was also observed for the experimental phase tran-
sition concentrations. This result also corroborates numerical cal-
culations™ and calculations that are exact up to first order in rod
density®”®" which show that the depth of the depletion potential
decreases monotonically as & increases.

The experimental phase transition concentrations correspond
reasonably well with the predictions using the D as determined
from the location of the isotropic-nematic coexistence concentration
vs the effective buffer ionic strength.”® The theoretical predictions
slightly underestimate the depletion effect resulting in a binodal at
higher concentrations. Original free volume theory shows the oppo-
site trend and systematically underestimates the binodal concentra-
tions. With increasing & we observe that the discrepancy between the
experimental results and the theoretical predictions becomes slightly
larger. The increase in the phase transition volume fraction of the
rods at lower sphere volume fractions is captured more accurately by

FIG. 2. Correlation functions from DWS
experiments in a (a) stable mixture

-4/ ‘ .
1010-3 1072 107" 1

(¢, = 0.0090) and (b) unstable mixture
10 (¢, = 0.0099) at a fixed sphere volume

t (ms) fraction of ¢ = 0.015, taken at increas-
ing times after mixing. (c) The mean
() relaxation time 7 plotted as a function of
0.12t time after quenching at the two indicated
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FIG. 3. Effect of size ratio & on the phase stability of colloidal rod/sphere mixtures.
The symbols indicate the experimental phase transitions as determined from DWS
measurements. The solid symbols denote the highest rod volume fraction ¢, at a
fixed sphere volume fraction ¢, where the mixture was stable, while the open sym-
bols indicate the lowest volume fraction of fd where the mixture was unstable. The
radii of the spheres used in the experiments are 248 nm (purple), 300 nm (blue),
354 nm (green) and 497 nm (yellow) and the length of the fd-virus is 880 nm. The
solid curves are binodals calculated using free volume theory where the excluded
volume of the rod depletants is explicitly taken into account and the dashed curves
show the results of original FVT for rod/sphere mixtures from Vliegenthart and
Lekkerkerker.2®

the new FVT and overall the deviation with the experimental results
is less in comparison with the original FVT. In Appendix A we fur-
ther discuss the differences between the FVT method from this paper
and the FVT approach from Vliegenthart and Lekkerkerker.”® We
note here that we determined the fluid/fluid binodal with FVT, based
on the observed phases in the experimental systems. At low sphere
volume fractions the fluid/fluid region closes and the spheres are
expected to phase separate into a fluid phase and a solid phase. The
exact location of this transition was not investigated due to the lack
of an accurate thermodynamic description of the binary solid phase.

B. Effect of rod thickness

In order to study the effect of the rod aspect ratio on the phase
behavior, we tune the rod thickness Dg. This can either be done
by grafting the rod with a polymer layer or by changing the ionic
strength of the buffer and thus the Debye length x™*. Here, we
applied both approaches at a fixed & value of 3.5. Two buffers were
prepared with the total ionic strengths set at 25 and 100 mM both
at a pH of 8.3, yielding D¢ = 14 nm and Deg = 11 nm, respectively.
Figure 4 displays the phase transition volume fractions under the
respective buffer conditions. The experimentally determined phase
transitions were observed to shift to higher ¢, by a factor two as Degt
was increased from 11 to 14 nm, as shown in Fig. 4. This strong
dependence of the location of the gas-liquid boundary on the rod
aspect ratio is confirmed by the free volume theory calculations, and
the effect of the difference in the rod thickness seems to be rep-
resented more accurately when the excluded volume of the rods is
explicitly taken into account. The shift of the phase boundaries as a
function of aspect ratio is also corroborated by calculations on the
depletion potential®® that showed that the depth of the attraction
increases as a function of aspect ratio. These calculations involve a
Derjaguin approximation for the pair potential. Although this is less
accurate for & > 1 than the exact DFT approach,® it is expected that
the observed trend is valid.
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FIG. 4. Effect of the effective rod diameter on the phase stability of colloidal
rod/sphere mixtures for a fixed & = 3.5. The symbols show the experimental results
for effective diameters of Degt ~ 14 nm (diamonds) and Dgg ~ 11 nm (triangles),
obtained by using ionic strengths of 25 and 100 mM, respectively. The effective
diameter of Deg ~ 19 nm (stars) corresponds to the sterically stabilized fd-PEG
complex at an effective ionic strength of 25 mM. The radii of the spheres used in the
experiments are 248 nm, and the length of the fd-virus is 880 nm. The solid curves
are binodals calculated using free volume theory where the excluded volume of
the rod depletants is explicitly taken into account, and the dashed curves show the
results of original FVT for rod/sphere mixtures from the work of Vliegenthart and
Lekkerkerker.2?

When comparing experiment and theory, one should keep in
mind that fd and the polystyrene spheres are both negatively charged
particles, which interact via a soft repulsive potential, while free vol-
ume theory assumes hard body interactions and does not consider
the soft repulsive potential present in charged systems. In addition,
we only took into account the increase of the rod diameter. The
Debye length x™" for the charged polystyrene particles changes from
~ 2 to 1 nm, which is less than 1% of the radius of the sphere. This
small difference is not expected to significantly affect the location of
the binodal.

Interactions are more hard-core-like when using polymer graft-
ing to tune Deg. With the polymer we used, the sterically stabilized
rods have an effective diameter of Deg = 19 nm. This system can
directly be compared to the system at an ionic strength of 100 mM
for which the surface charge is screened quite effectively so that it
can also considered to be a hard rod system. The phase transition
concentrations for the fd-PEG/sphere system are displayed in Fig. 4
and are further shifted toward higher ¢ , following the same trend as
the charged system. The mismatch between the theoretical predic-
tions and the experimental results seems to be significantly larger
for the sterically stabilized rods compared to the rods with a soft
electrostatic repulsion.

V. DISCUSSION

Free volume theory captures the observed phenomena semi-
quantitatively, namely, the shift of the phase boundary to higher
¢, with an increasing size ratio £ and decreasing aspect ratio of the
rod. The predictions with closest agreement are for £ = 1.8 in Fig. 3
and Dy = 11 nm in Fig. 4, where the binodal volume fraction of
the rods ¢, is small. In Fig. 5, we show the deviations of the experi-
mentally measured rod volume fractions at the phase transition with
respect to the binodal rod volume fractions ¢t"" predicted by FVT
of Vliegenthart and Lekkerkerker” for all the samples shown in
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FIG. 5. Deviation of the experimental and FVT results with respect to the predic-
tions from original FVT of Vliegenthart and Lekkerkerker.2® The symbols denote
the difference between the experimental phase transition rod volume fractions and
the binodal rod volume fractions predicted by original FVT (¢"*) as a function of
¢>‘,’VL for all the studied parameters ¢, &, and Des. The color and shape of the
symbols correspond to the data points in Figs. 3 and 4. The curves show the
differences between binodal rod volume fractions predicted by FVT discussed in
Sec. Il and ¢t as a function of ¢* for the studied parameters & and Dyf, and
¢, ranging from 0.005 to 0.07.

Figs. 3 and 4. The experimental phase transition concentrations are
taken as the average of the highest concentration where a stable
mixture was found and the lowest concentration where phase sepa-
ration occurs. We also show the deviation of the binodal rod volume
fractions resulting from FVT discussed in Sec. II with the original
predictions ¢&V".

Figure 5 shows that there is an almost linear deviation between
the experimental phase boundaries and the predictions of original
FVT as a function of the binodal rod volume fraction for all the
investigated samples. A similar linear deviation is also found when
comparing the differences between the two FVT methods. This
increasing deviation at higher rod volume fractions is most likely
because the effect of the excluded volume of the rods is not accu-
rately accounted for in the original theory, which becomes increas-
ingly important at higher rod volume fractions. The fact that the
deviations between the adjusted FVT and the experimental results
with respect to original FVT show a similar trend indicates that
explicitly taking the excluded volume of rods into account in the free
volume descriptions of the reservoir and the system leads to a more
accurate prediction of the phase stability.

Even though FVT captures the effects of £ and D on the phase
stability of rod/sphere mixtures with reasonable accuracy, there is
still a systematic overestimation of the binodal volume fractions
compared to the experimental results. This is most likely due to
inherent differences between the experimental model system and the
theoretical model. Additionally, we compare differences between the
experimental and theoretical phase transitions through the differ-
ence in the rod volume fraction at a certain sphere volume fraction.
However, the experimental points show the rod volume fractions
where colloidal clusters first start to form, whereas FVT gives the vol-
ume fraction where macroscopic phase coexistence occurs. A more
detailed comparison could be obtained by measuring experimen-
tal tie-lines in macroscopically phase separated systems that can be
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directly compared with FVT results. This could also provide more
insights into the location of the critical point in the experimental
system. However, measuring such tie-lines is experimentally very
involved.®’

The fd-virus used in the experiments is semi-flexible, which
is not accounted for in the current theory. Due to flexibility,
the apparent length of the rods is shorter than the actual con-
tour length,'® leading to lower demixing volume fractions than
expected for fully rigid rods. For colloid/polymer mixtures, it has
also been shown that rigidity leads to binodals at higher deple-
tant concentrations with FVT.*" Furthermore, the rods and spheres
are treated as mono-disperse in the calculations, whereas in the
experiments, there is some polydispersity present. However, poly-
dispersity of the colloidal spheres is not expected to have a large
influence on the location of the fluid/fluid binodal.®> Polydisperse
depletants can lead to a lowering of the fluid/fluid binodal,**"”
but the rod-like fd-virus used in the experimental system is very
mono-disperse.

The fd-viruses used in the experiments are either electro-
statically or sterically stabilized but are described as hard rods
using an effective diameter based on the isotropic/nematic tran-
sition. With this approach, the softness of the repulsion between
the charged rods is not fully accounted for. Moreover, the effective
thickness is based on the electrostatic repulsion between the fd-
viruses, but the repulsion between the fd-virus and the polystyrene
spheres is different and therefore not properly accounted for in
Desr. Due to the high surface charge density of the fd-virus, the
average effective thickness in the binary system is most likely
smaller, which can explain the systematic over-prediction of the
theoretical binodal concentrations. The difference in interactions
can be taken into account in FVT by incorporating a different
effective thickness of the rods for the excluded volume between
the rods and the spheres than for the excluded volume between
rods. The effect of the charges on the interactions between the
polystyrene spheres is also neglected since the Debye length is very
small compared to the sphere radius. However, this charge does
affect the strength of the depletion potential of the spheres at close
distances.

In the case of the sterically stabilized fd-PEG, the effective
thickness is based on the interactions between rods, which all have a
steric layer. The polystyrene spheres in the experiments do not have
a steric polymer brush, and interactions between the PEG polymers
on the fd-virus and the polystyrene surface might significantly affect
the observed phase transitions. The interactions between PEG poly-
mers and polystyrene particles have been studied in the literature,
and in some cases, a bridging attraction between the polystyrene
spheres caused by adsorbing PEG chains was observed.®*® Figure 5
clearly shows that the deviation between experiments and theory is
significantly larger for the rods with steric stabilization than for the
electrostatically stabilized rods. This might be because the PEG poly-
mers on the surface of the fd-rods are not fully non-adsorbing but
have some attraction with the surface of the polystyrene spheres.
To verify this, the phases in the fd-PEG/polystyrene mixtures
should be studied in more detail and more phase boundaries with
fd-PEG depletants, for example, with varying PEG chain lengths,
can be measured. Alternatively, PEG-stabilized colloidal spheres can
be used to ensure steric repulsion between the surfaces of the spheres
and the rods.
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Finally, the deviation between experimental observations and
FVT predictions seems to increase for larger size ratios €. This might
be because the SPT approach used for the determination of the
free volume becomes less accurate when the dimensions of the rod
become large with respect to the spherical particles. SPT was used
because an expression for the free volume available for a rod in a
mixture of spheres and rods was readily available.” This descrip-
tion of the free volume might be slightly improved by using an FMT
approach along the lines of Oversteegen and Roth;*” however, the
volume excluded by the rods has to be explicitly accounted for in
the FMT expression. Despite the differences between the experimen-
tal system and the theoretical model, free volume theory seems to
integrate the most important aspects and gives a reasonably accu-
rate qualitative prediction of the phase boundaries for colloidal
rod/sphere mixtures. For future work, the FVT method discussed
throughout this paper can be used to further map the phase behav-
ior of colloidal rod/sphere mixtures in a more complete parameter
space.

VI. CONCLUSIONS

The effect of the sphere size and effective rod diameter on the
phase boundaries of colloidal rod/sphere mixtures was systemati-
cally investigated with experiments and free volume theory. Phase
transitions from isotropic to a fluid/fluid coexistence were observed
in mixtures of polystyrene spheres and rod-like fd-viruses upon
increasing the fd concentration. The size ratio £ = L/R between
the rods and the spheres was varied by using chemically identical
polystyrene spheres but with different diameters. The effective diam-
eter D of the charged fd-virus was varied by changing the ionic
strength of the buffer or by attaching a short polymer brush to the
surface of the rods. An increase in either & or Deg results in a shift
of the phase stability boundary toward higher rod volume fractions.
These trends were confirmed by FVT calculations. The FVT model
was extended to take the excluded volume of the rods explicitly into
account in the descriptions of the free volume and the reservoir.
The resulting theoretical predictions match the experimental mea-
surements with reasonable accuracy. However, a systematic overes-
timation of the binodal concentrations was observed for the the-
oretical predictions compared to the experimental results. This is
most likely due to the mapping of the experimental mixtures on the
theoretical system of hard rigid particles using an effective rod diam-
eter. The deviation between the experimental results and the FVT
predictions was significantly larger for the sterically stabilized fd-
PEG with respect to the electrostatically stabilized rods. This might
be related to the interactions between the PEG brush on the fd-
virus and the surface of the polystyrene spheres and requires further
investigation.
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APPENDIX A: COMPARISON OF FVT METHODS

Figures 3 and 4 in Sec. IV showed the binodals determined with
FVT of Vliegenthart and Lekkerkerker’® and the binodals deter-
mined with FVT discussed in Sec. II where the excluded volume
of the rods is explicitly taken into account. The main difference
between the results of the two methods is that original FVT predicts
the binodals at much lower volume fractions. In original FVT, the
excluded volume of the rods is not accounted for in the free volume
descriptions of the reservoir and the system. Therefore, the free vol-
ume available in the reservoir and the system is significantly higher
than in reality. Moreover, the distribution of rods over the system
and reservoir is no longer linear as a function of reservoir concen-
tration when the excluded volume of the rods is taken into account.
This is due to the possibility of overlap between the depletion zones
around the rods and the depletion zones of the spherical particles
or other rods. Because of this, the free volume fraction in the sys-
tem decreases faster in the reservoir than in the system as a function
of reservoir volume fraction ¢f. As a result, the volume fraction of
rods in the system at a certain reservoir concentration is larger with
respect to original FVT and the binodals shift toward higher rod
concentrations.

The increase in rod concentrations in the system is demon-
strated in Fig. 6 where the ratio between the volume fractions in
the reservoir and in the system is plotted as a function of the vol-
ume fraction of rods in the reservoir for the values of ¢ and D
of the studied rod/sphere mixtures. The ratio between the two vol-
ume fractions is given by the ratio of the free volume available in the
reservoir and the system according to Eq. (7). The deviation between
the two FVT methods is the largest for the highest size ratio &, which
is expected since the size of the depletion zones are larger relative to
the size of the spherical particles, and the effect of the excluded vol-
ume of the rods will be the strongest. The thickness of the rods does
not have a strong influence on the deviation between the two FVT
methods. The deviation in the binodals and in the depletant distribu-
tion between the two FVT methods is quite substantial, which is due
to the fact that rod-like particles have a very large effective excluded
volume relative to their physical volume. To further test the accuracy
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FIG. 6. The ratio of the rod volume fractions in the system and in the reservoir
¢r/4R as a function of the volume fraction of rods in the reservoir ¢R. The solid
curves show the results of FVT in Sec. Il, whereas the dashed lines show the
results from the FVT method of Vliegenthart and Lekkerkerker.2® The volume frac-
tion of spheres is kept constant: ¢, = 0.03. The length of the rods is 880 nm, and
the radii of the spheres are 248 nm (purple), 300 nm (blue), 354 nm (green), and
497 nm (yellow) in (a) and 248 nm in (b), corresponding to Figs. 3 and 4,
respectively.

J. Chem. Phys. 154, 204906 (2021); doi: 10.1063/5.0048809
Published under license by AIP Publishing

154, 204906-10


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

0.02
Dt = 14 nm ¢ §=35  Deg(nm)
0.03 ©
~ 35 + 19
= 29 ~ 14

& 001

FIG. 7. Full FVT binodals of the rod/sphere mixtures discussed in Sec. |\V. The
solid curves are fluid/fluid binodals calculated using free volume theory where the
excluded volume of the rod depletants is explicitly taken into account, and the
dashed curves show the results of original FVT for rod/sphere mixtures from the
work of Vliegenthart and Lekkerkerker.2® The closed symbols indicate the critical
point of the solid binodals, and the open symbols indicate the critical point of the
dashed binodals. The vertical dashed lines indicate the region of the binodals that
is shown in Figs. 3 and 4 (0.0015 < ¢ < 0.07). Panel (a) shows the effect of
the size ratio £ on the binodal, and panel (b) shows the effect of the effective rod
thickness Dy

of the FVT method, it would be interesting to compare the distribu-
tion of rods over the reservoir and the system, as shown in Fig. 6,
with computer simulations. This distribution is fully determined by
the free volume available in the system and in the reservoir through
Eq. (7). Although these simulations have been performed for spher-
ical depletants’’ and infinitely thin rods,”® they have not been done
for rods with a finite thickness.

APPENDIX B: FVT BINODALS

The full binodals of the studied rod/sphere mixtures, includ-
ing the liquid branches and critical points, determined with FVT
are shown in Fig. 7. The region that is shown in Figs. 3 and 4 in
Sec. IV is indicated by the vertical dashed lines. We show both the
results from FVT outlined in Sec. II (solid curves) and the origi-
nal FVT approach of Vliegenthart and Lekkerkerker.”® The critical
points are estimated from the volume fractions where the gas branch
and the liquid branch of the binodals meet. We emphasize that parts
of the shown binodals are expected to be meta-stable with respect
to the fluid/solid coexistence of the spherical particles since the bin-
odals shown go up to sphere volume fractions larger than ¢ = 0.5
where fluid/solid coexistence occurs for a pure hard-sphere disper-
sion. Mapping the full phase diagram of colloidal rod/sphere mix-
tures is beyond the scope of this work where we focus on the stability
boundaries through the fluid/fluid binodals.

DATA AVAILABILITY
The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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