Hauptseite > Publikationsdatenbank > Quantum Support Vector Machine Algorithms for Remote Sensing Data Classification > print |
001 | 893824 | ||
005 | 20250401102814.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS47720.2021.9554802 |2 doi |
024 | 7 | _ | |a 2128/31336 |2 Handle |
024 | 7 | _ | |a WOS:001250139802200 |2 WOS |
037 | _ | _ | |a FZJ-2021-02863 |
100 | 1 | _ | |a Delilbasic, Amer |0 P:(DE-HGF)0 |b 0 |
111 | 2 | _ | |a IEEE International Geoscience and Remote Sensing Symposium (IGARSS) |c Brussels |d 2021-07-12 - 2021-07-16 |w Belgium |
245 | _ | _ | |a Quantum Support Vector Machine Algorithms for Remote Sensing Data Classification |
260 | _ | _ | |c 2021 |b IEEE |
295 | 1 | 0 | |a 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS : [Proceedings] - IEEE, 2021. - ISBN 978-1-6654-0369-6 - doi:10.1109/IGARSS47720.2021.9554802 |
300 | _ | _ | |a 2608-2611 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1635430170_13275 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
520 | _ | _ | |a Recent developments in Quantum Computing (QC) have paved the way for an enhancement of computing capabilities. Quantum Machine Learning (QML) aims at developing Machine Learning (ML) models specifically designed for quantum computers. The availability of the first quantum processors enabled further research, in particular the exploration of possible practical applications of QML algorithms. In this work, quantum formulations of the Support Vector Machine (SVM) are presented. Then, their implementation using existing quantum technologies is discussed and Remote Sensing (RS) image classification is considered for evaluation. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731) |0 G:(DE-Juel-1)aidas_20200731 |c aidas_20200731 |x 2 |
536 | _ | _ | |a AISee - AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 1 |e Corresponding author |
700 | 1 | _ | |a Willsch, Madita |0 P:(DE-Juel1)167543 |b 2 |u fzj |
700 | 1 | _ | |a Melgani, Farid |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 5 |
773 | _ | _ | |a 10.1109/IGARSS47720.2021.9554802 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893824/files/IGARSS_2021_Delilbasic.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893824 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)167543 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)138295 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|