001     893825
005     20250310131243.0
024 7 _ |a 10.1109/IGARSS47720.2021.9555136
|2 doi
024 7 _ |a WOS:001250139801213
|2 WOS
037 _ _ |a FZJ-2021-02864
100 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 0
111 2 _ |a IEEE International Geoscience and Remote Sensing Symposium
|g IGARSS 2021
|c Brussels
|d 2021-07-12 - 2021-07-16
|w Belgium
245 _ _ |a Enhancing Large Batch Size Training of Deep Models for Remote Sensing Applications
260 _ _ |c 2021
|b IEEE
295 1 0 |a 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS : [Proceedings] - IEEE, 2021. - ISBN 978-1-6654-0369-6 - doi:10.1109/IGARSS47720.2021.9555136
300 _ _ |a 1583-1586
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1635430213_13275
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a A wide variety of Remote Sensing (RS) missions arecontinuously acquiring a large volume of data every day. The availability of large datasets has propelled Deep Learning (DL) methods also in the RS domain. Convolutional Neural Networks (CNNs) have become the state of the art when tackling the classification of images, however the process of training is time consuming. In this work we exploit the Layer-wise Adaptive Moments optimizer for Batch training (LAMB) optimizer to use large batch size training on High-Performance Computing (HPC) systems. With the use of LAMB combined with learning rate scheduling and warm-up strategies, the experimental results on RS data classification demonstrate that a ResNet50 can be trained faster with batch sizes up to 32K.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|e Corresponding author
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
700 1 _ |a Book, Matthias
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/IGARSS47720.2021.9555136
856 4 _ |u https://juser.fz-juelich.de/record/893825/files/IGARSS2021_SAT6.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:893825
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21