001     893827
005     20211023141247.0
024 7 _ |a 10.1109/IPDPSW52791.2021.00019
|2 doi
024 7 _ |a 2128/28081
|2 Handle
024 7 _ |a altmetric:109125167
|2 altmetric
024 7 _ |a WOS:000689576200008
|2 WOS
037 _ _ |a FZJ-2021-02866
100 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
|c Portland
|d 2021-06-17 - 2021-06-21
|w USA
245 _ _ |a Practice and Experience in using Parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures
260 _ _ |c 2021
|b IEEE
300 _ _ |a 76-85
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1634912175_10456
|2 PUB:(DE-HGF)
520 _ _ |a We observe a continuously increased use of Deep Learning (DL) as a specific type of Machine Learning (ML) for data-intensive problems (i.e., ’big data’) that requires powerful computing resources with equally increasing performance. Consequently, innovative heterogeneous High-Performance Computing (HPC) systems based on multi-core CPUs and many-core GPUs require an architectural design that addresses end user communities’ requirements that take advantage of ML and DL. Still the workloads of end user communities of the simulation sciences (e.g., using numerical methods based on known physical laws) needs to be equally supported in those architectures. This paper offers insights into the Modular Supercomputer Architecture (MSA) developed in the Dynamic Exascale Entry Platform (DEEP) series of projects to address the requirements of both simulation sciences and data-intensive sciences such as High Performance Data Analytics (HPDA). It shares insights into implementing the MSA in the Jülich Supercomputing Centre (JSC) hosting Europe No. 1 Supercomputer Jülich Wizard for European Leadership Science (JUWELS). We augment the technical findings with experience and lessons learned from two application communities case studies (i.e., remote sensing and health sciences) using the MSA with JUWELS and the DEEP systems in practice. Thus, the paper provides details into specific MSA design elements that enable significant performance improvements of ML and DL algorithms. While this paper focuses on MSA-based HPC systems and application experience, we are not losing sight of advances in Cloud Computing (CC) and Quantum Computing (QC) relevant for ML and DL.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 2
536 _ _ |a AISee - AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 3
536 _ _ |a DEEP-SEA - DEEP – SOFTWARE FOR EXASCALE ARCHITECTURES (955606)
|0 G:(EU-Grant)955606
|c 955606
|f H2020-JTI-EuroHPC-2019-1
|x 4
536 _ _ |a EUROCC - National Competence Centres in the framework of EuroHPC (951732)
|0 G:(EU-Grant)951732
|c 951732
|f H2020-JTI-EuroHPC-2019-2
|x 5
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
|u fzj
700 1 _ |a Barakat, Chadi
|0 P:(DE-Juel1)178934
|b 2
|u fzj
700 1 _ |a Einarsson, Petur
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hassanian, Reza
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 5
|u fzj
700 1 _ |a Book, Matthias
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neukirchen, Helmut
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 8
|u fzj
773 _ _ |a 10.1109/IPDPSW52791.2021.00019
856 4 _ |u https://juser.fz-juelich.de/record/893827/files/IPDPS_HCW_Camera_Ready-Final.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893827
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178934
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21