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Jülich, Germany

a.lintermann@fz-juelich.de

Abstract—We observe a continuously increased use of Deep
Learning (DL) as a specific type of Machine Learning (ML)
for data-intensive problems (i.e., ’big data’) that requires pow-
erful computing resources with equally increasing performance.
Consequently, innovative heterogeneous High-Performance Com-
puting (HPC) systems based on multi-core CPUs and many-core
GPUs require an architectural design that addresses end user
communities’ requirements that take advantage of ML and DL.
Still the workloads of end user communities of the simulation
sciences (e.g., using numerical methods based on known physical
laws) needs to be equally supported in those architectures.
This paper offers insights into the Modular Supercomputer
Architecture (MSA) developed in the Dynamic Exascale Entry
Platform (DEEP) series of projects to address the requirements
of both simulation sciences and data-intensive sciences such as
High Performance Data Analytics (HPDA). It shares insights into
implementing the MSA in the Jülich Supercomputing Centre
(JSC) hosting Europe No. 1 Supercomputer Jülich Wizard
for European Leadership Science (JUWELS). We augment the
technical findings with experience and lessons learned from
two application communities case studies (i.e., remote sensing
and health sciences) using the MSA with JUWELS and the
DEEP systems in practice. Thus, the paper provides details into
specific MSA design elements that enable significant performance
improvements of ML and DL algorithms. While this paper
focuses on MSA-based HPC systems and application experience,
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and Innovation Framework Programme under the grant agreement no. 951733,
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we are not losing sight of advances in Cloud Computing (CC)
and Quantum Computing (QC) relevant for ML and DL.

Index Terms—High performance computing, cloud computing,
quantum computing, machine learning, deep learning, parallel
and distributed algorithms, remote sensing, health sciences,
modular supercomputer architecture

I. INTRODUCTION

Today, an academically-driven supercomputing centre’s
(e.g., Juelich Supercomputing Centre1, Barcelona Supercom-
puting Centre2, or Finish IT Center for Science CSC3) ap-
plication portfolio is highly multidisciplinary, raising diverse
requirements for a HPC architecture that enables research for
a wide variety of end-user communities [1]. Examples include
but are not limited to astrophysics, computational biology
and biophysics, chemistry, earth and environment, plasma
physics, computational soft matter, fluid dynamics, elementary
particle physics, computer science and numerical mathematics,
condensed matter, and materials science. Not only the research
approaches in these communities are diverse, but also the way
how they employ scalable algorithms, numerical methods, and
parallelisation strategies. Many of these are ’traditional HPC
applications’ (i.e., modeling and simulation sciences) that use
iterative methods and rely heavily on a small number of

1https://www.fz-juelich.de/ias/jsc/EN/Home/home node.html
2https://www.bsc.es/
3https://www.csc.fi/en/csc



numerical algorithmic classes that operate on relatively small
to moderate-sized data sets and accrue very high numbers of
floating-point operations across iterations. But we observe that
the complexity (e.g., using CPU in conjunction with GPUs)
and memory requirements (e.g., using complex memory hier-
archies) of HPC codes of those applications increases, leading
to a dissonance with these traditional HPC system workloads.

More recently, new user communities add to the above men-
tioned diversity in the sense of using the HPC systems with
HPDA using ML and DL in conjunction with containers [2]
and interactive supercomputing (e.g., via Jupyter4 notebooks)
[3]. Those workloads (e.g., remote sensing or health sciences)
are rapidly emerging and require a change in HPC systems
architecture. They exhibit less arithmetic intensity and instead
require additional classes of parallel and scalable algorithms
to work well (e.g., DL networks with interconnections of
GPUs to scale to extreme scale). Some end-user communities
(e.g., neurosciences and earth sciences) make intertwined
use of both traditional simulation sciences-based HPC and
HPDA simultaneously, leading to the term ’scientific big data
analytics’ [4], [5]. This confluence of HPC and HPDA is
also recognized by processor chip vendors such as Intel5 or
NVIDIA6 and collaboration between academic centers and
such industry partners is key to achieve extreme scale.

CC is another computing approach that is highly relevant
for ML and DL, making parallel and distributed computing
more straightforward to use (e.g., via containers or Jupyter
notebooks) than traditional rather complex HPC systems.
Remote sensing researchers and health scientists often take
advantage of Apache open-source tools with parallel and
distributed algorithms (e.g., map-reduce [6] as a specific form
of divide and conquer approach) based on Spark [7] or the
larger Hadoop ecosystem [8]). Also, inherent in many ML
and DL approaches are optimization techniques while many
of them are fast solvable by QCs [9] that represent the
most disruptive type of computing today. Despite being in its
infancy, Quantum Annealer (QA)s are specific forms of QC
used by remote sensing and health researchers to search for
solutions to optimization problems already [10], [11].

This paper reveals practice and experience using the het-
erogenous MSA that has been co-designed by 15 applications
during the course of the DEEP7 series of projects. The goal
of the MSA is to address traditional HPC and more recent
HPDA workloads while we particularly focus in this paper on
heterogenous ML and DL workloads. We offer lessons learned
implementing our production implementation of the MSA in
HPC systems such as the DEEP cluster8 or Europe No. 1
Supercomputer JUWELS9. Although HPC drives the MSA,

4https://jupyter.org/
5https://www.intel.com/content/www/us/en/high-performance-computing/high-

performance-data-analytics.html
6https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-analytics/
7https://www.deep-projects.eu/
8https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-

EST node.html
9https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/

JUWELS node.html

certain aspects in this paper will also provide information
about our recent QC MSA module briefly discussing our early
knowledge of using D-Wave Systems10 quantum annealers for
ML. Also, given that service offerings from commercial cloud
vendors are relevant for ML and DL research, we provide
interoperability links in the MSA context where possible (e.g.
using containers). To provide a reasonable focus in this paper,
we concentrate on two concrete end-user communities case
studies using the MSA with different ML and DL applications
from remote sensing and health sciences.

The remainder of the paper is structured as follows. After
the scene is set in Section I, Section II introduces the MSA
heterogenous overall design. Section III then reveals lessons
learned from using this MSA with concrete application case
studies from the remote sensing end user communities. Section
IV informs about practice and experience in health science
applications using the MSA. While related work is reviewed
in Section V, our paper ends with some concluding remarks.

II. HETEROGENOUS MODULAR SUPERCOMPUTING
ARCHITECTURE

Over the last years, we observe a continuously increasing
complexity of computations with various concurrently exe-
cuted functionalities in HPC and HPDA application workloads.
To support these workloads requires heterogeneous hardware
architecture designs under the constraints of minimal energy
consumption, minimal time to solution, and minimal general
systems cost. As shown in Fig. 1, the MSA [1] strives to ad-
dress these constraints by providing a modular design to break
with the tradition of replicating many identical (potentially
heterogeneous) compute nodes and integrate the heterogeneous
computing resources instead at the system level. That design
connects computing modules with different hardware and
performance characteristics to create a single heterogeneous
system seamlessly integrating a storage module (i.e., multi-
tier storage system). While each module is a parallel clustered
system (i.e., of potentially large sizes), a high-performance
federated network connects the module-specific interconnects.

Our MSA brings substantial benefits for heterogeneous
application workloads because each application and its parts
can be run on an exactly matching system, improving time to
solution and energy use. An MSA implementation is ideal for
a supercomputer centre infrastructure such as JSC in Germany
(e.g., JUWELS) or CSC in Finland (e.g., EuroHPC LUMI11)
running heterogeneous application mixes. One of the MSA
advantages is the valuable flexibility for system operators,
allowing the set of modules and their size to be tailored to the
computing centre actual application portfolio. That includes
a design approach of gradually integrating also innovative
modules with disruptive technologies such as emerging neu-
romorphic or quantum devices.

The MSA has many benefits resulting from more than a
decade of experience gathered at the Juelich Supercomputing

10https://www.dwavesys.com/
11https://eurohpc-ju.europa.eu/discover-eurohpc



Fig. 1. Heterogenous Modular Supercomputer Architecture

Centre in the co-development, operation, support of diverse
user communities, and maintenance of HPC systems. The
MSA has successfully shown that this approach to heteroge-
neous computing enables the most efficient use of computing
resources while providing application developers with all
necessary tools to take the step from Petascale to emerging
Exascale computing [1]. Fig. 2 provides selected examples that
show that no single technology could ever satisfactorily fulfil
all the requirements of diverse HPC user communities (e.g.,
earth sciences, neurosciences, space weather, radio astronomy,
high energy physics, molecular dynamics). The above benefits
become even better understood when considering HPC sys-
tems’ constraints to become both more user-friendly and more
energy-efficient at the same time.

As Fig. 2 also reveals, the MSA enables users to take
advantage of HPC systems that best suit their needs. Users
with low/medium-scalable codes with high data management
benefit from a general purpose cluster (i.e., cluster module).
Other users with highly scalable codes and more regular
communication patterns benefit from a massively parallel and
scalable HPC system (i.e., booster module). However, the third
type of users benefits from some characteristics of both of
these two architecture elements requiring one single platform
well interconnected, as shown in Fig. 2. Those third type of
users also use applications that take advantage of the above
rather traditional architectures (i.e., general purpose cluster
vs. highly scalable booster) in combination with innovative
computing architectures such as those specifically designed
for data analytics (i.e., large memory), quantum computing,
or neuromorphic computing.

A. The Module Heterogenous Characteristica

The MSA is illustrated in Fig. 1 and consists of various
modules with different HPC hardware characteristics in order
to support different workloads of applications on one overarch-
ing HPC system. Each MSA module is tailored to fit the needs

Fig. 2. Scalable and Diverse Application Workload Examples of the MSA

of a specific set of computations, storage, or communication
tasks with the goal of reaching exascale performance, which is
unlikely to be achieved using traditional and rather static non-
accelerated HPC system designs with CPUs, storage, memory,
and interconnects.

The Cluster Module (CM) offers a module with powerful
Cluster Nodess (CNs) which consist of multi-core CPU that
offer fast single-thread performance and therefore makes is
suitable for applications that are very computationally ex-
pensive. It offers a good amount of memory but enables
only limited scalability being highly interconnected within
the module itself but also to other modules using a high-
performance Network Federation (NF) (e.g., EXTOLL12).

In contrast to the multi-core CM module, the Extreme Scale
Booster (ESB) module [1] is a manycore system for highly
scalable application workloads whereby each of the many CPU
cores in the system offers only moderate performance. As
shown in Fig. 1, the ESB module also includes the Global
Collective Engine (GCE) integrated in its network fabric that
leverages a Field-Programmable Gate Array (FPGA) in order
to speed-up common Message Passing Interface (MPI) collec-
tive operations in hardware such as MPI reduce operations.
One use case for ML is typically that compute-intensive
training can be performed on the CM module while inference
and testing (i.e., both less compute-intensive) can be scaled-
out on the ESB.

The Data Analytics Module (DAM) offers accelerators like
Graphics Processing Unit (GPU) which are particularly useful
for deep learning algorithms, but also offers a high amount of
memory for Apache Spark and other Hadoop ecosystem tools.
Furthermore, the Scalable Storage Service Module (SSSM)
offers a high capacity in storage using underlying parallel file
system technologies, such as Lustre or the General Parallel
File System (GPFS) from IBM at JSC.

Finally, the Network Attached Memory (NAM) module [12]
is a special module that is only available as a prototype
right now in DEEP. It enables setups for machine learning
and sharing datasets over the network instead of duplicate
downloads of datasets by individual research group members.

12http://www.extoll.de/



B. The MSA Implementation at JSC

To fully exploit and conduct research with our unique MSA
approach [1], the JSC implements the MSA approach with
different systems such as the DEEP modular supercomputer
(see Fig. 3 G) and the JUWELS modular supercomputer (see
Fig. 3 H). The DEEP DAM comprises 16 nodes, each with
2 Intel Xeon Cascade Lake CPUs, 1 NVIDIA V100 GPU,
1 Intel STRATIX10 FPGA, and 446 GB of RAM, as well
as a total of 2 TB of Non-Volatile Memory (NVM). Hence,
with an aggregated 32 TB of NVM, this HPC module design
is primarily driven to support big data analytics stacks like
Apache Spark13 (see Fig. 3 R) that require a high amount
of memory to work fast. The module also has access to the
SSSM module (see Fig. 3 S) of the cluster to support large-
scale datasets and keep the local DAM storage available for
memory-intensive applications. The specifications of the DAM
of the DEEP cluster are presented in Table I.

TABLE I
TECHNICAL SPECIFICATIONS OF THE DEEP DAM

CPU 16 nodes with 2x Intel Xeon Cascade Lake
Hardware Acceleration 16 NVIDIA V100 GPU

16 Intel STRATIX10 FPGA PCIe3
Memory 384 GB DDR4 CPU memory /node

32 GB DDR4 FPGA memory /node
32 GB HBM2 GPU memory /node

Storage 2x 1.5 TB NVMe SSD

The JUWELS supercomputer, currently the fastest super-
computer in Europe and 7th fastest worldwide14, consist of
2,583 and 940 nodes respectively, totalling 122,768 CPU cores
and 224 GPUs in the cluster module, and 45,024 CPU cores
and 3,744 GPUs in the booster module.

III. REMOTE SENSING CASE STUDY EXPERIENCES

Earth Observation (EO) programs have an open data policy
and provide a massive volume (i.e., ’big data’) of free multi-
sensor datasets for remote sensing community researchers
every day. EO systems (e.g., satellites) have advanced in recent
decades due to the technological evolution integrated into
Remote Sensing (RS) optical and microwave instruments. For
example, NASA’s Landsat [13] and ESA’s Copernicus [14]
provide this ‘big data‘ via high spectral-spatial coverage at
high revisiting time, which enables global monitoring of the
Earth in a near real-time manner. Their characteristics include
volume (increasing scale of acquired/archived data), velocity
(rapidly growing data generation rate and real-time processing
needs), variety (data obtained from multiple satellites’ sensors
that have different spectral, spatial, temporal, and radiometric
resolutions), veracity (data uncertainty/accuracy), and value
(extracted information) [15]. Some RS applications that re-
quire HPC resources are ’(near) real-time processing’ in case
of earth disasters (see Fig. 3 A), ’exploration of oil reservoirs’
(see Fig. 3 B), and ’earth land cover classification’ (see Fig.
3 C). Our case study focuses on the research and development
of successfully operational DL classifiers for ’earth land cover
classification’ (see Fig. 3 top right).

13https://spark.apache.org/
14https://www.top500.org/lists/top500/2020/11/

The use of highly scalable DL tools on parallel HPC systems
such as available in the Partnership for Advanced Computing
in Europe (PRACE) infrastructure (see Fig. 3 D) is a necessary
solution to train DL classifiers in a reasonable amount of time,
providing RS researchers with a high-accuracy performance
in the application recognition tasks. The same is true for the
emerging HPC system landscape currently acquired by the
EuroHPC Joint Undertaking such as the LUMI supercomputer
in Finland (see Fig. 3 E).

Our RS case study mainly takes advantage of the MSA-
based JUWELS system (see Fig. 3 ) at the JSC in Germany,
representing the fastest EU supercomputer with 122,768 CPU
cores only in its cluster module (cf. Section II-A H). While
JUWELS and multi-core processors (see Fig. 3 U) offer
tremendous performance, the particular challenge to exploit
this data analysis performance for ML is that those systems
require specific parallel and scalable techniques. In other
words, using JUWELS cluster module CPUs with Remote
Sensing (RS) data effectively requires parallel algorithm im-
plementations opposed to using plain scikit-learn15, R16, or
different serial algorithms. Parallel ML algorithms are typi-
cally programmed using the MPI standard, and OpenMP (see
Fig. 3 L) that jointly leverage the power of shared memory
and distributed memory via low latency interconnects (e.g.,
Infiniband17) and parallel filesystems (e.g., Lustre18).

Given our experience, the availability of open-source par-
allel and scalable machine learning implementations for the
JUWELS cluster module CPUs that go beyond Artificial
Neural Network (ANN)s or more recent DL networks (see
Fig. 3 O) is still relatively rare. The reason is the complexity
of parallel programming of ML and DL codes and thus using
HPC with CPUs only can be a challenge when the amount of
data is relatively moderate (i.e., DL not always succesful). One
example is using a more robust classifier such as a parallel and
scalable Support Vector Machine (SVM) open-source package
(see Fig. 3 M) that we developed with MPI for CPUs and used
to speed up the classification of RS images [16].

A. Selected DL Experiences on MSA-based Systems

The many-core processor approach of the highly scalable
JUWELS booster (see Section II-B) with accelerators brings
many advancements to both simulation sciences and data
sciences, including innovative DL techniques. Using many
numerous simpler processors with hundreds to thousands of
independent processor cores enabled a high degree of parallel
processing that fits very nicely to the demands of DL training
whereby lots of matrix-matrix multiplications are performed.
Today, hundreds to thousands of accelerators like Nvidia
GPUs (see Fig. 3 V) are used in large-scale HPC systems,
offering unprecedented processing power for RS data analysis.
JUWELS Booster module offers 3744 GPUs of the most

15https://scikit-learn.org/stable/
16https://www.r-project.org/
17https://www.mellanox.com/products/interconnect/infiniband-overview
18https://www.lustre.org/



Fig. 3. Remote Sensing applications taking advantage of the MSA ensuring conceptual interoperability with Clouds.

recent innovative type of Nvidia A100 tensor core19 cards.
Our experience on MSA-based systems such as DEEP20 (see
Fig. 3 G), JURECA 21, and JUWELS shows that open-source
DL packages such as TensorFlow22 (now including Keras23) or
pyTorch24 are powerful tools for large-scale RS data analysis.

We experienced that it can be quite challenging to have
the right versions of python code matching the available DL
and ML tools and libraries versions on HPC systems with
GPUs given the fast advancements of DL libraries, acceler-
ators, and HPC systems. Our case study further reveals that
using HPC systems can significantly speed up DL networks’
training through distributed training frameworks, which can
exploit a heterogenous HPC cluster’s parallel environment
such as JUWELS. Using one GPU is usually straighforward
to use, but using very many GPUs connected by NVLlink or
NVSwitches to scale beyond a large-scale HPC node setup
can be challenging using distributed DL training tools such
as Horovod25 or, more recently, DeepSpeed26 (see Fig. 3 N).
The DL model’s distributed training employs a multi-node
data parallelism strategy that minimises the time required to
finish full training using multiple GPUs and communicating
with MPI to synchronise the learning process. Hence, the fast
dedicated network of the MSA-based JUWELS Booster (i.e.,
Infiniband) is used while the learning from data processing is

19https://www.nvidia.com/en-us/data-center/a100/
20https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-

EST/ node.html
21https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JURECA/JURECA node.html
22https://www.tensorflow.org/
23https://keras.io/
24https://pytorch.org/
25https://horovod.ai/
26https://www.deepspeed.ai/

distributed across multiple nodes.
Our experience in using the MSA-based JUWELS with

Horovod with a cutting-edge Residual Network (RESNET-50)
[17] DL network indicates a significant speed-up of training
time without loosing accuracy [18] (see Fig. 3 middle right).
That effect has even more impact because the speed-up enables
the deployment of various models to compare their perfor-
mances in a reasonable amount of time. Thus, our case study
performed a high-performance distributed implementation of
RESNET-50 type of a deep Convolutional Neural Network
(CNN) but tuned for our ’multi-class land cover image classi-
fication’ problem. Lessons learned also revealed that RESNET-
50 alongside other known DL networks is already part of the
library, making it simple for even other user communities to
re-use proven deep neural network architectures. Our RS case
study uses the BigEarthNet [19] dataset that is conveniently
stored in the Scalable Storage Service Module (SSSM) of
JUWELS (see Fig. 3 D). Our experimental results attest that
distributed DL training can significantly reduce the training
time without affecting prediction accuracy (see Fig. 3 bottom
right). Our initial case study used 96 GPUs while in later
research driven by Sedona et al. [20], we achieved even a
better speed-up on JUWELS using 128 interconnected GPUs
after having more experience with Horovod.

B. Conceptual Interoperability with Commercial Clouds

Using MSA-based HPC systems with their software portfo-
lio also enables conceptual interoperability with commercial
Cloud vendors (). RESNET-50, for example, is available in
DL packages available in our HPC module environment (i.e.,
Keras, TensorFlow, see Fig. 3 O) on JUWELS and DEEP.
Those Python scripts from Keras and TensorFlow can be
quickly migrated into clouds if needed using the Amazon Web



Services (AWS) EC2 combined with the Amazon Machine
Images (AMI)27 that also offer DL images with the same set
of DL packages (see Fig. 3 K).

Using container technologies such as Docker28 (see Fig.
3 J) in Clouds and Singularity29 on JUWELS (see Fig. 3 I)
enables another interoperability layer. In other words, Singu-
larity on JUWELS can work with Docker files30 available on
the DockerHub31. Also Docker images are available for DL
packages (e.g., TensorFlow in DockerHub32) but in practice
working with commercial clouds is still challenging when
using cutting-edge GPU types (see Fig. 3 v) required for
DL because of high costs (e.g., AWS33 EC2 24 USD per
hour rate for V100, i.e., p3.16xlarge). Our RESNET-50 studies
mentioned above is using 128 GPUs for many hours, hence, we
need to use still the cost-free HPC computational time grants to
be feasible. Examples for those HPC grants are provided by e-
infrastructures such as PRACE34 in the EU (e.g., that includes
free of charge A100 GPUs in JUWELS) or Extreme Science
and Engineering Discovery Environment (XSEDE)35 in the
US. Lessons learned from us reveal that free CC resources of
CC vendors have drawbacks like the Google Collaboratory36

getting just different types of GPUs assigned that make it
relatively hard to perform proper speed-up studies not even
mentioning the missing possibility to interconnect GPUs for
large-scale distributed training of DL networks.

Beside DL packages in containers, also CC vendors offer
other relevant software stacks in containers or native that are
used by RS researchers with parallel and scalable tools such
as Apache Spark (see Fig. 3 R) [8] in the last years. Our
experience case study in using Apache Spark in Clouds as
described in Haut et al. [7] uses Spark to develop a cloud
implementation of a DL network for non-linear RS data
compression known as AutoEncoder (AE). Of course, Spark
pipelines offer also the possibility to work in conjunction
with DL techniques such as recently shown by Lunga et al.
[21] for RS datasets. The analysis of larger RS datasets can
take advantage of Apache Spark on the large-memory DEEP
DAM nodes (cf. Section II-B) using the MLlib implementation
that offers also robust classifiers often used 37. Using the
DEEP DAM system then can be combined by using new
types of memory hierarchies that go beyond NVM using an
innovative NAM [1] (see Fig. 3 T). That also enables another
interoperability level with clouds since most CC vendors offer
Apache Spark with MLlib as part of their Hadoop ecosystems
(e.g., AWS Elastic Map Reduce service, see Fig. 3 K) too.

27https://aws.amazon.com/machine-learning/amis/
28https://www.docker.com/
29https://singularity.lbl.gov/
30https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
31https://hub.docker.com/
32https://hub.docker.com/r/tensorflow/tensorflow
33https://aws.amazon.com/
34https://prace-ri.eu/
35https://www.xsede.org/
36https://colab.research.google.com/
37https://spark.apache.org/docs/latest/ml-classification-regression.html#random-

forest-classifier

Our case studies reveal that CC makes parallel and dis-
tributed computing more straightforward to use than traditional
HPC systems, such as using the very convenient Jupyter38 (see
Fig. 3 P) toolset that abstracts the complexities of underlying
computing systems. But our experience also revealed that
the look and feel of using CC services (e.g., starting up
Jupyter notebooks or dataset handling) differ between those
vendors such as Amazon Web Services (AWS), MS Azure39,
Google Collaboratory or Google Cloud 40. That makes it
hard for non-technical users to work with various commercial
clouds at the same time. The use of Jupyter notebooks is also
becoming more widespread as shown by Goebbert et al. in
[3] for JSC MSA systems41. Apart from whole containers,
Jupyter notebooks can also be easily migrated into Clouds
representing yet another interoperability level. To use Jupyter
straightforward with DL packages and Dask [22], but we
usually define our own Kernel in the Jupyter environments
that work good with our HPC systems.

C. Disruptive Quantum Computing Module

Section II-B already introduced the quite innovative QM
of the MSA architecture that is currently being deploying at
JSC in Germany under the umbrella of the Juelich UNified
Infrastructure for Quantum computing (JUNIQ)42. QC use
‘Qubits‘ that carries information as ‘0’ or ‘1’ or both simul-
taneously known as ’superposition’´ [23] and the advances
of ML and QC open possibilities to address new RS data
analysis problems. Combining these fields is termed ’Quantum
ML’ [24] leveraging QC concepts such as ’superposition’ and
’entanglement’ that make quantum computers much faster than
conventional computers for certain computational tasks [23].

QA represents an innovative computing approach used
for simple RS data analysis problems to solve certain ML
algorithms’ optimisation problems [9]. We used a quantum
SVM that reveals that on QA modules of MSA-based HPC
systems such as a D-Wave system43 with 2000 qubits enables
new approaches for RS research, but are still limited by having
only binary classification or the requirement to sub-sample
from large quantities of data and using ensemble methods
[11]. More recent lessons learned from us revealed that QA
evolution bears a lot of potentials since we are already using
D-Wave Leap44 with the QQ Advantage system using 5000
qubits and 35000 couplers. As shown in our module design
in Fig. 1, the idea is not to replace HPC system but rather
augment them (i.e., like accelerators did with CPUs) for
particular computational tasks using QNs (e.g., for specific
machine learning optimization problems).

38https://jupyter.org/
39https://azure.microsoft.com/en-us/
40https://cloud.google.com/
41https://jupyter-jsc.fz-juelich.de/
42https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2019/2019-10-

25-juniq.html
43https://www.dwavesys.com/quantum-computing
44https://cloud.dwavesys.com/leap/



Fig. 4. Health science applications taking advantage of the MSA enabling seamless access for non-technical medical experts.

IV. HEALTH CASE STUDY EXPERIENCES

Health sciences are a broad field while our case studies
involve medical imaging, time series analyis of medical pa-
tients, and computational neuroscience to better understand our
human brain. Despite being a relative broad field all of them
apply cutting-edge DL techniques on MSA systems while at
the same need to be used by not technical users. Details of
HPC, containers, CPU vs. GPUs, job scripts, distributed DL
training tools, etc. needs to be all at least partly abstracted
away so that medical doctors, medical imaging experts, or
neuroscientists still are able to work with the tools.

As a consequence and in contrast to the above case study
in remote sensing, these health case studies emphasize on
the fact that complex MSA-based systems such as DEEP or
JUWELS with cutting-edge technologies can still be used by
not technical experts. Another notion is that medical data
analysis or neuroscience dataset analysis results need to be
often seamlessly shared with other experts to form a second
opinion. The technology in the context of MSA that addresses
the above constraints is our JupyterLab45 installation at JSC
(see Fig. 4 O) as described in [3]. JupyterLab is a Web-
based Interactive Development Environment (IDE) for Jupyter
notebooks, code, and data. JupyterLab is flexible to support a
wide range of workflows in data science, HPC, and ML.

Finally, note that all the datasets we used for our case studies
are actually anonymized patient data or post-mortem human
brains. Hence, all data analysis is in-line with the General Data
Protection Regulation (GDPR)46.

45https://jupyterlab.readthedocs.io/en/stable/
46https://www.eu-patient.eu/globalassets/policy/data-protection/

data-protection-guide-for-patients-organisations.pdf

A. Covid-19 Chest X-Ray Image Analysis

Our first case study called ’Covid-19 Chest X-Rays Analysis’
(see Fig. 4 B) represents one approach to address the COVID-
19 pandemic that continues to have a devastating effect on
the health of the global population. A critical step in the
fight against COVID-19 is effective screening of infected
patients, with one of the key screening approaches being
radiology examination using chest radiography. World-wide
studies revealed that patients present abnormalities in chest
radiography images that are characteristic of those infected
with COVID-19 [25].

We initially reused a CNN model available as open-source
named COVID-Net [25] that is tailored for the detection of
COVID-19 cases from chest X-ray (CXR) images (see Fig. 4
bottom right). Using DEEP and JUWELS HPC systems with
distributed trailing tools (see Fig. 4 M) based on MPI (see Fig.
4 L) and DL package TensorFlow (see Fig. 4 N) we have been
able to reproduce the results. Given that JUWELS is equipped
with A100 GPUs (see Fig. 4 U) with latest cuDNN support
(see Fig. 4 P) the inference and training time of the Covid-
Net model is significantly faster as with GPUs of the previous
generation given its tensor cores.

We used several publicly available datasets of COVIDx [25]
that is an open access benchmark dataset initially comprising
of 13,975 CXR images across 13,870 patient patient cases. But
in the last couple of month this dataset was extended numerous
times with new datasets made available that in turn we used
again with Covid-Net as well. The SSSM of the MSA systems
and its parallel file system Lustre (see Fig. 4 R) provides a
powerful storage mechanism to store the COVIDx datasets and
its updates.

This module also stores additional data we obtained from



a collaborating Pharma company that we in turn used to
validate that Covid-Net is able to generalize well to unseen
datasets. The dataset used is available as open datasets as
part of the B2DROP services of the European Open Science
Cloud (EOSC) 47. Using the MSA-based systems JUWELS
and DEEP seamlessly with Jupyter requires the definition of
an own Kernel48 using the module49 environment of the MSA
HPC systems (see Fig. 4 bottom right). Our experience on
using our own Kernels with Jupyter notebooks is very positive
while at the same time offering a user interface with notebooks
that are user-friendly enough for medical imaging experts.

B. Time Series Data Analysis of ARDS Patients

Our application case study ’ARDS Time Series Analysis’
(see Fig. 4 A) addresses the medical condition Acute Res-
piratory Distress Syndrome (ARDS) that affects on average
1-2% of mechanically-ventilated (MV) Intensive Care Unit
(ICU) patients and has a 40% mortality rate [26], [27]. At
present the leading protocol for diagnosing the condition is the
Berlin definition that defines onset of ARDS as a prolonged
ratio of arterial oxygen potential to fraction of inspired oxygen
(P/F ratio) of less than 300 mmHg, and the lower this value
is determined to be, the more severe the diagnosis is [28].
Several papers have determined a correlation between early
detection of onset of ARDS and survival of the patient, which
highlights the need of early detection and treatment of the
condition, before onset of sepsis and subsequently multi-organ
failure [27], [29], [30]. Hence, the goal of this case study is to
develop an algorithmic approach that provides early warning
and informs medical staff of mitigating procedures can be a
beneficial tool for ICU personnel.

We take advantage of the freely available ICU patient data
provided in the Medical Information Mart for Intensive Care
- III (MIMIC-III) database, compiled between 2001 and 2012
from admissions to the Beth Israel Deaconess Medical Center
in Boston, MA [31]. The procedure thus, is to build and test
our models using patient data from the MIMIC-III database,
then verify our results using patient data collected from hos-
pital participating in our German Smart Medical Information
Technology for Healthcare (SMITH) project consortium50 with
real hospitals, and finally roll out the developed model for
implementation in ICU for real-time testing [32]. The data,
which consists of many time- series of varying lengths, is
noisy and often has many missing values. Noise is often
easy to filter out either using passive or unsupervised learning
methods, however filling out missing values requires more in-
depth knowledge of the data and how the features relate to one
another. Which leads us to ask: can we implement modern DL
techniques in sequence analysis to predict missing values in
medical time series data?

47https://marketplace.eosc-portal.eu/services/b2drop
48https://jupyter-jsc.fz-juelich.de/nbviewer/github/FZJ-JSC/jupyter-jsc-

notebooks/blob/master/001-Jupyter/Create JupyterKernel general.ipynb
49https://hpc-wiki.info/hpc/Modules
50https://www.smith.care/home-2/

As shown in Fig. 4, our case study uses the Gated Recurrent
Units (GRU) model is that is built with two GRU layers with
32 units each, with dropout values of 0.2 and both kernel and
recurrent regularization, followed by an output layer (Dense
layer of size 1). GRU are belonging to the class of Recurrent
Neural Network (RNN) and are thus massively computational
expensive thus requiring HPC systems for training. 32 units
were chosen for the layers after testing several sizes and tuning
for the combination that produced lowest loss value. Loss is
calculated using the Mean Absolute Error (MAE) function and
the optimisation is performed using the ADAM algorithm with
a learning rate of 1e-4. Not many further parameters could be
altered as part of this research due to the Keras library not
supporting CuDNN for GRU parameters outside the defaults.
Fig. 4 shows the model structure and the shape of the tensors
at each layer.

We used for early setups the DEEP DAM and then transi-
tioned to the JUWELS MSA-based system and both worked
fine for parallel and scalable time-series analysis. The results
highlight One-Dimensional CNN as promising method as well
as GRUs for predicting missing values in time-series data and
that further supports our ongoing activities to develop an early
warning system for ARDS. Finally, in this use case, medical
experts use a Jupyter notebook to work with the datasets
and DL models without being exposed to the underlying
complexity of the MSA-based HPC systems.

C. Neuroscience

The application case study ’Neuroscience and BigBrain
Research’ (see Fig. 4 C) works on the interoperability of the
Canadian CBRAIN51 infrastructure for neuroscience (see Fig.
4 F) as part of our joint Canadian-German project HIBALL52.
We enabled interoperability by using container technologies
such as Singularity on JUWELS (see Fig. 4 I) and Docker-
based environments (see Fig. 4 J) available in the CBRAIN
resource execution managed by the Bourreau system (see Fig.
4 K). The seamless use of containers between CBRAIN and
JUWELS (see Fig. 4 top right) enables powerful neuroscience
workflows across these computing infrastructures that also
includes the use of the DataLad53 tool (see Fig. 4 Q) for
managing TB and PB of relevant BigBrain datasets. The user-
friendly CBRAIN portal enables the use of the complex MSA-
based system JUWELS without knowing the details of the sys-
tem whereby this is being preconfigured for neuroscience users
via Bourreau in conjunction with pre-configured containers.

V. RELATED WORK

Given the innovative approach of the MSA-based HPC
design approach (e.g., as in JSC systems like JUWELS or
the nordic supercomputer LUMI), there is not much related
work specifically when focussing on remote sensing and health
sciences in the light of cutting-edge machine learning or deep
learning. Instead we survey related work items that address

51https://mcin.ca/technology/cbrain/
52https://bigbrainproject.org/hiball.html
53https://www.datalad.org/



HPC, CC, and QC in the context of remote sensing and health
sciences. However, we observe a move to more and more
heterogenous HPC architectures, including the use of different
accelerator technologies (i.e., Nvidia GPUs in JUWELS vs
AMD Instinct in LUMI).

Already ten years ago, Lee et al. [33] highlighted in a
survey paper for RS a trend in the design of HPC systems
for data-intensive problems is to utilize highly heterogeneous
computing resources. CC evolved as an evolution of Grid
computing to make parallel and distributed computing more
straightforward to use than traditional rather complex HPC
systems. In this context RS researchers often take advantage
of Apache open-source tools with parallel and distributed al-
gorithms (e.g., map-reduce [6] as a specific form of divide and
conquer approach) based on Spark [7] or the larger Hadoop
ecosystem [8]. Inherent in many ML and DL approaches are
optimization techniques while many of them are incredibly fast
solvable by QCs [9] that represent the most innovative type of
computing today. Despite being in its infancy, QAs are specific
forms of QC used by RS researchers [10], [11] to search for
solutions to optimization problems already today. Using GPUs
in the context of Unmanned Aerial Vehicle (UAV)s is shown
in [34]. Other examples of RS approaches of using Spark with
CC are distributed parallel algorithms for anomaly detection
in hyper-spectral images as shown in [35]. Another recent
example of using QA for feature extraction and segmentation
is shown by Otgonbaatar et al. in [36].

Le et al. trained a gradient boosted tree model using the
MIMIC-III database that would provide an early prediction
model for ARDS. Their model could accurately detect onset of
ARDS, and had a relatively high predictivity of the condition
up to 48 hours before onset [37]. Zhou et al. developed a joint
Convolutional Neural Network (CNN)-RNN model that uses
Natural Language Processing (NLP) to extract information
from collected patient-physician data. The trained model is
expected to provide patients with a recommendation for the
appropriate clinic based on their reported symptoms and the
researchers reported an accuracy of results of 88.63% [38].
Che et al. employed the MIMIC-III database, as well as
synthetic data, in the development and testing of a novel
RNN-based mortality prediction model. Their GRU-D model
is based on the GRUs discussed earlier in this paper, with
an added ”decay” mechanism that takes advantage of some
of the inherent properties of medical timeseries data (i.e.
homeostasis) in order to accomodate missing values. The
proposed model performed better than traditional GRU, SVM,
and Random Forest approaches [39]. Finally, Punn et al.
fine-tuned and compared the performance of several cur-
rently available deep neural networks in diagnosing COVID-
19 from chest X-ray images. The models were tested for
binary classification in order to find out whether COVID-19 is
detected or not, as well as for multi-class classification where
healthy patients the model would distinguish between healthy,
COVID-19, and pneumonia patients. Their results highlighted
the NASNetLarge-based model as having an overall superior
performance than the other proposed models [40].

VI. CONCLUSIONS

We conclude that HPC centres and their heterogeneous
research domains entail many highly processing-intensive ap-
plication areas for HPC, CC, and QC systems. The MSA
addresses all these applications’ needs, representing an energy-
efficient system architecture that fits innovative HPC and
HPDA workloads of cutting-edge HPC systems such as those
emerging from the EuroHPC pre-exascale and exascale tracks
(e.g., VEGA, MeluXina, Euro-IT4I, PetaSC, LUMI, Deu-
calion, Leonardo, etc.). It balances and satisfies the require-
ments of end-users as well as HPC centre operators. The
highly interconnected MSA ensures that current workloads
are supported by the Cluster module, the Extreme Scale
Booster module, and the Data Analytics module (e.g., health
application lessons learned described above). More disruptive
workloads with quantum modules and neuromorphic modules
can be conveniently integrated too (e.g., remote sensing appli-
cation lessons learned described above).

Further conclusions about resource management and
scheduling are fully supporting the MSA with scheduling
heterogeneous workloads to show being able to schedule het-
erogeneous workloads onto matching combinations of MSA
module resources. The two diverse scientific domain areas
of remote sensing and health sciences have been used in
this paper to demonstate some of these added values of
the MSA while more impacts of the MSA can be seen on
the DEEP series of projects and the Center of Excellence
(CoE) Research on AI- and Simulation-Based Engineering at
Exascale (RAISE) Web page54.

CoE RAISE will leverage the MSA implementation (e.g.,
in HPC systems such as JUWELS and LUMI) in various areas
of engineering applications. Hence, our approaches outlined in
this paper are currently applied to those engineering applica-
tions outlining our future work in this area briefly. We started
working on compute-intensive use cases in the areas of AI for
turbulent boundary layers, AI for wind farm layout optimiza-
tion, AI for data-driven models in reacting flows, smart models
for next-generation aircraft engine design, and AI for wetting
hydrodynamics. We also started working on data-intensive use
cases in the areas of event reconstruction and classification
at the CERN HL-LHC, seismic imaging with remote sensing
(oil and gas exploration and well maintenance), defect-free
metal additive manufacturing, sound engineering. Also these
applications will validate the full MSA hardware and software
stack with relevant HPC and extreme data workloads and thus
demonstrate the benefits of the MSA in the next years.
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