Home > Publications database > Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease > print |
001 | 893832 | ||
005 | 20220126162548.0 | ||
024 | 7 | _ | |a 10.1093/brain/awab236 |2 doi |
024 | 7 | _ | |a 0006-8950 |2 ISSN |
024 | 7 | _ | |a 1460-2156 |2 ISSN |
024 | 7 | _ | |a 2128/28859 |2 Handle |
024 | 7 | _ | |a altmetric:108531568 |2 altmetric |
024 | 7 | _ | |a pmid:34196700 |2 pmid |
024 | 7 | _ | |a WOS:000733722200033 |2 WOS |
037 | _ | _ | |a FZJ-2021-02871 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Doppler, Christopher E J |0 P:(DE-Juel1)161350 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease |
260 | _ | _ | |a Oxford |c 2021 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1635490801_8395 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters.Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson’s disease. We examined 93 subjects (40 healthy controls and 53 Parkinson’s disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kinnerup, Martin B |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Brune, Corinna |0 P:(DE-Juel1)184720 |b 2 |
700 | 1 | _ | |a Farrher, Ezequiel |0 P:(DE-Juel1)138244 |b 3 |u fzj |
700 | 1 | _ | |a Betts, Matthew |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Fedorova, Tatyana D |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Schaldemose, Jeppe L |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Knudsen, Karoline |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Ismail, Rola |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Seger, Aline D |0 P:(DE-Juel1)184882 |b 9 |u fzj |
700 | 1 | _ | |a Hansen, Allan K |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Stær, Kristian |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Fink, Gereon R |0 P:(DE-Juel1)131720 |b 12 |u fzj |
700 | 1 | _ | |a Brooks, David J |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Nahimi, Adjmal |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Borghammer, Per |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Sommerauer, Michael |0 P:(DE-Juel1)179044 |b 16 |u fzj |
773 | _ | _ | |a 10.1093/brain/awab236 |g p. awab236 |0 PERI:(DE-600)1474117-9 |n 9 |p 2732–2744 |t Brain |v 144 |y 2021 |x 1460-2156 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893832/files/awab236.pdf |
856 | 4 | _ | |y Published on 2021-07-01. Available in OpenAccess from 2022-07-01. |u https://juser.fz-juelich.de/record/893832/files/Doppler_2021_Brain_Regional%20locus%20coeruleus....pdf |
909 | C | O | |o oai:juser.fz-juelich.de:893832 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161350 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138244 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)184882 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)179044 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRAIN : 2019 |d 2021-01-29 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b BRAIN : 2019 |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|