001     893833
005     20240610120427.0
024 7 _ |a 10.1103/PhysRevMaterials.5.044601
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/28084
|2 Handle
024 7 _ |a altmetric:103413950
|2 altmetric
024 7 _ |a WOS:000655931600003
|2 WOS
037 _ _ |a FZJ-2021-02872
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ariskina, Regina
|0 0000-0003-2792-9808
|b 0
245 _ _ |a Influence of surface band bending on a narrow band gap semiconductor: Tunneling atomic force studies of graphite with Bernal and rhombohedral stacking orders
260 _ _ |a College Park, MD
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625908389_1584
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tunneling atomic force microscopy (TUNA) was used at ambient conditions to measure the current-voltage (I−V) characteristics at clean surfaces of highly oriented graphite samples with Bernal and rhombohedral stacking orders. The characteristic curves measured on Bernal-stacked graphite surfaces can be understood with an ordinary self-consistent semiconductor modeling and quantum mechanical tunneling current derivations. We show that the absence of a voltage region without measurable current in the I−V spectra is not a proof of the lack of an energy band gap. It can be induced by a surface band bending due to a finite contact potential between tip and sample surface. Taking this into account in the model, we succeed to obtain a quantitative agreement between simulated and measured tunnel spectra for band gaps (12...37) meV, in agreement with those extracted from the exponential temperature decrease of the longitudinal resistance measured in graphite samples with Bernal stacking order. In contrast, the surface of relatively thick graphite samples with rhombohedral stacking reveals the existence of a maximum in the first derivative dI/dV, a behavior compatible with the existence of a flat band. The characteristics of this maximum are comparable to those obtained at low temperatures with similar techniques.
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schnedler, Michael
|0 P:(DE-Juel1)143949
|b 1
|e Corresponding author
700 1 _ |a Esquinazi, Pablo D.
|0 0000-0003-0649-1472
|b 2
700 1 _ |a Champi, Ana
|0 0000-0002-2354-8867
|b 3
700 1 _ |a Stiller, Markus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hergert, Wolfram
|0 0000-0003-0912-0546
|b 5
700 1 _ |a Dunin-Borkowski, R. E.
|0 P:(DE-Juel1)144121
|b 6
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 7
700 1 _ |a Venus, Tom
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Estrela-Lopis, Irina
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1103/PhysRevMaterials.5.044601
|g Vol. 5, no. 4, p. 044601
|0 PERI:(DE-600)2898355-5
|n 4
|p 044601
|t Physical review materials
|v 5
|y 2021
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/893833/files/PRM-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/893833/files/PhysRevMaterials.5.044601.pdf
909 C O |o oai:juser.fz-juelich.de:893833
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-2792-9808
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143949
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0003-0649-1472
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-2354-8867
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21