000893851 001__ 893851
000893851 005__ 20240712112911.0
000893851 0247_ $$2doi$$a10.21014/acta_imeko.v10i2.1054
000893851 0247_ $$2Handle$$a2128/34043
000893851 037__ $$aFZJ-2021-02875
000893851 041__ $$aEnglish
000893851 082__ $$a620
000893851 1001_ $$0P:(DE-HGF)0$$aBarbara, Cannas$$b0
000893851 245__ $$aNILM techniques applied to a real-time monitoring system of the electricity consumption
000893851 260__ $$aBraunschweig$$c2021
000893851 3367_ $$2DRIVER$$aarticle
000893851 3367_ $$2DataCite$$aOutput Types/Journal article
000893851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677578611_7385
000893851 3367_ $$2BibTeX$$aARTICLE
000893851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893851 3367_ $$00$$2EndNote$$aJournal Article
000893851 520__ $$aNon-Intrusive Load Monitoring (NILM) allows providing appliance-level electricity consumption information and decomposing the overall power consumption by using simple hardware (one sensor) with a suitable software. This paper presents a low-frequency NILM-based monitoring system suitable for a typical house. The proposed solution is a hybrid event-detection approach including an event-detection algorithm for devices with a finite number of states and an auxiliary algorithm for appliances characterized by complex patterns. The system was developed using data collected at households in Italy and tested also with data from BLUED, a widely used dataset of real-world power consumption data. Results show that the proposed approach works well in detecting and classifying what appliance is working and its consumption in complex household load dataset.
000893851 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000893851 7001_ $$0P:(DE-HGF)0$$aSara, Carcangiu$$b1
000893851 7001_ $$0P:(DE-Juel1)186779$$aCarta, Daniele$$b2$$eCorresponding author
000893851 7001_ $$0P:(DE-HGF)0$$aAlessandra, Fanni$$b3
000893851 7001_ $$0P:(DE-HGF)0$$aCarlo, Muscas$$b4
000893851 7001_ $$0P:(DE-HGF)0$$aGiuliana, Sias$$b5
000893851 7001_ $$0P:(DE-HGF)0$$aBeatrice, Canetto$$b6
000893851 7001_ $$0P:(DE-HGF)0$$aLuca, Fresi$$b7
000893851 7001_ $$0P:(DE-HGF)0$$aPaolo, Porcu$$b8
000893851 773__ $$0PERI:(DE-600)2720960-X$$a10.21014/acta_imeko.v10i2.1054$$n2$$p139-146$$tActa IMEKO$$v10$$x0237-028X$$y2021
000893851 8564_ $$uhttps://juser.fz-juelich.de/record/893851/files/1054-7309-1-PB-1.pdf$$yOpenAccess
000893851 909CO $$ooai:juser.fz-juelich.de:893851$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire$$qextern4vita
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cagliari$$b0
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cagliari$$b1
000893851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186779$$aForschungszentrum Jülich$$b2$$kFZJ
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cagliari$$b3
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cagliari$$b4
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Cagliari$$b5
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bithiatech Technologies$$b6
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bithiatech Technologies$$b7
000893851 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Bithiatech Technologies$$b8
000893851 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000893851 9141_ $$y2022
000893851 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000893851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000893851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000893851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893851 920__ $$lyes
000893851 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000893851 9801_ $$aFullTexts
000893851 980__ $$ajournal
000893851 980__ $$aVDB
000893851 980__ $$aUNRESTRICTED
000893851 980__ $$aI:(DE-Juel1)IEK-10-20170217
000893851 981__ $$aI:(DE-Juel1)ICE-1-20170217