000893853 001__ 893853
000893853 005__ 20210810182035.0
000893853 0247_ $$2doi$$a10.1016/j.nicl.2021.102666
000893853 0247_ $$2Handle$$a2128/28034
000893853 0247_ $$2altmetric$$aaltmetric:105010296
000893853 0247_ $$2pmid$$a34215141
000893853 0247_ $$2WOS$$aWOS:000670324000006
000893853 037__ $$aFZJ-2021-02877
000893853 082__ $$a610
000893853 1001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b0
000893853 245__ $$aNeurobiological substrates of the positive formal thought disorder in schizophrenia revealed by seed connectome-based predictive modeling
000893853 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2021
000893853 3367_ $$2DRIVER$$aarticle
000893853 3367_ $$2DataCite$$aOutput Types/Journal article
000893853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625664498_20460
000893853 3367_ $$2BibTeX$$aARTICLE
000893853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893853 3367_ $$00$$2EndNote$$aJournal Article
000893853 520__ $$aFormal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and employed machine-learning to investigate the neurobiological correlates of FTD along positive and negative symptom dimensions in schizophrenia. Three a priori, meta-analytically defined FTD-related brain regions were used as seeds to generate whole-brain resting-state functional connectivity (rsFC) maps, which were then compared between schizophrenia patients and controls. A repeated cross-validation procedure was realized within the patient group to identify clusters whose rsFC patterns to the seeds were repeatedly observed as significantly associated with specific FTD dimensions. These repeatedly identified clusters (i.e., robust clusters) were functionally characterized and the rsFC patterns were used for predictive modeling to investigate predictive capacities for individual FTD dimensional-scores. Compared with controls, differential rsFC was found in patients in fronto-temporo-thalamic regions. Our cross-validation procedure revealed significant clusters only when assessing the seed-to-whole-brain rsFC patterns associated with positive-FTD. RsFC patterns of three fronto-temporal clusters, associated with higher-order cognitive processes (e.g., executive functions), specifically predicted individual positive-FTD scores (p = 0.005), but not other positive symptoms, and the PANSS general psychopathology subscale (p > 0.05). The prediction of positive-FTD was moreover generalized to an independent dataset (p = 0.013). Our study has identified neurobiological correlates of positive FTD in schizophrenia in a network associated with higher-order cognitive functions, suggesting a dysexecutive contribution to FTD in schizophrenia. We regard our findings as robust, as they allow a prediction of individual-level symptom severity.
000893853 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893853 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893853 7001_ $$0P:(DE-Juel1)166036$$aWensing, Tobias$$b1
000893853 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2
000893853 7001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna C.$$b3
000893853 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika I.$$b4
000893853 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b5
000893853 7001_ $$0P:(DE-HGF)0$$aAleman, André$$b6
000893853 7001_ $$0P:(DE-HGF)0$$aDerntl, Birgit$$b7
000893853 7001_ $$0P:(DE-HGF)0$$aGruber, Oliver$$b8
000893853 7001_ $$0P:(DE-HGF)0$$aJardri, Renaud$$b9
000893853 7001_ $$00000-0002-9493-2321$$aKogler, Lydia$$b10
000893853 7001_ $$0P:(DE-HGF)0$$aSommer, Iris E.$$b11
000893853 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b12
000893853 7001_ $$00000-0003-2616-6503$$aNickl-Jockschat, Thomas$$b13$$eCorresponding author
000893853 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2021.102666$$gVol. 30, p. 102666 -$$p102666 -$$tNeuroImage: Clinical$$v30$$x2213-1582$$y2021
000893853 8564_ $$uhttps://juser.fz-juelich.de/record/893853/files/1-s2.0-S2213158221001108-main.pdf$$yOpenAccess
000893853 909CO $$ooai:juser.fz-juelich.de:893853$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b0$$kFZJ
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich$$b3$$kFZJ
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b4$$kFZJ
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
000893853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b12$$kFZJ
000893853 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893853 9141_ $$y2021
000893853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893853 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000893853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2019$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893853 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000893853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893853 920__ $$lyes
000893853 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000893853 980__ $$ajournal
000893853 980__ $$aVDB
000893853 980__ $$aUNRESTRICTED
000893853 980__ $$aI:(DE-Juel1)INM-7-20090406
000893853 9801_ $$aFullTexts