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ARTICLE INFO ABSTRACT

Keywords: Formal thought disorder (FTD) is a core symptom cluster of schizophrenia, but its neurobiological substrates
Formal thought disorder remain poorly understood. Here we collected resting-state fMRI data from 276 subjects at seven sites and
Neuroimaging

employed machine-learning to investigate the neurobiological correlates of FTD along positive and negative
symptom dimensions in schizophrenia. Three a priori, meta-analytically defined FTD-related brain regions were
used as seeds to generate whole-brain resting-state functional connectivity (rsFC) maps, which were then
compared between schizophrenia patients and controls. A repeated cross-validation procedure was realized
within the patient group to identify clusters whose rsFC patterns to the seeds were repeatedly observed as
significantly associated with specific FTD dimensions. These repeatedly identified clusters (i.e., robust clusters)
were functionally characterized and the rsFC patterns were used for predictive modeling to investigate predictive
capacities for individual FTD dimensional-scores. Compared with controls, differential rsFC was found in patients
in fronto-temporo-thalamic regions. Our cross-validation procedure revealed significant clusters only when
assessing the seed-to-whole-brain rsFC patterns associated with positive-FTD. RsFC patterns of three fronto-
temporal clusters, associated with higher-order cognitive processes (e.g., executive functions), specifically pre-
dicted individual positive-FTD scores (p = 0.005), but not other positive symptoms, and the PANSS general
psychopathology subscale (p > 0.05). The prediction of positive-FTD was moreover generalized to an inde-
pendent dataset (p = 0.013). Our study has identified neurobiological correlates of positive FTD in schizophrenia
in a network associated with higher-order cognitive functions, suggesting a dysexecutive contribution to FTD in
schizophrenia. We regard our findings as robust, as they allow a prediction of individual-level symptom severity.

Machine learning

1. Introduction incoherent speech and can manifest in various disorders (Andreasen,
1979; DelLisi, 2001). In particular, FTD is a core symptom of schizo-
Formal thought disorder (FTD) is characterized by disorganized and phrenia, defined by the DSM-5 as one of the five major diagnostic

* Corresponding author at: Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, Iowa City
52242, 1A, United States.
E-mail address: thomas-nickl-jockschat@uiowa.edu (T. Nickl-Jockschat).

https://doi.org/10.1016/j.nicl.2021.102666

Received 14 July 2020; Received in revised form 1 April 2021; Accepted 3 April 2021

Available online 30 April 2021

2213-1582/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:thomas-nickl-jockschat@uiowa.edu
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2021.102666
https://doi.org/10.1016/j.nicl.2021.102666
https://doi.org/10.1016/j.nicl.2021.102666
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2021.102666&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Chen et al.

criteria. Critical for the disease trajectory, FTD serves as a robust and
consistent predictor of transition to psychosis in clinical high-risk sam-
ples (Hartmann, 2016; DeVylder et al., 2014; Armando et al., 2015). The
clinical presentation of FTD is heterogeneous: impairments as diverse as
impoverished thinking, disorganized thought processes or lack of
spontaneous conversation are usually subsumed under this broad um-
brella (Kircher et al., 2018). Given this heterogeneity, researchers have
suggested a dichotomy that relates to the concept of positive and
negative symptoms in schizophrenia (Andreasen et al., 1990). Following
this line of thought, disorganized thinking would be regarded as “posi-
tive FTD”, while impoverished thought processes would be labeled as
“negative FTD” (Kircher et al., 2018; Andreasen, 1986). This dichotomy
appears to be clinically highly relevant (Roche et al., 2015), since the
negative FTD dimension has been shown to better predict conversion to
schizophrenia in subjects at risk for psychosis, irrespective of genetic
liability (Ott et al., 2002). Also, these two symptom clusters of FTD
relate to distinct neuropsychological deficits (Nagels, 2016). Moreover,
specific FTD dimensions (i.e., negative or positive FTD), rather than
overall FTD, were found to be associated with poor outcome in psychotic
disorders (Roche et al., 2015; Roche, 2016). Hence, separating FTD into
positive and negative dimensions and investigating their respective
neurobiological underpinnings is important for understanding
schizophrenia.

Early functional magnetic resonance imaging (fMRI) studies mainly
compared regional neural activations between schizophrenia patients
and healthy controls during different language-related tasks and
examined FTD symptoms as a single dimension (McGuire et al., 2002;
Ragland, 2008; Kircher, 2003; Arcuri et al., 2012; Chen et al., 2014;
Cavelti et al., 2018). While abnormal activations within the traditional
temporal language network (Friederici, 2012) were consistently
observed and reported to be correlated with FTD severity in schizo-
phrenia (Cavelti et al., 2018); findings outside this language network
including prefrontal, postcentral (Kircher, 2001), and fusiform gyri
(Ragland, 2008; Kircher et al., 2008) were less frequently implicated. A
recent meta-analysis from our lab identified three clusters within the
temporal lobe, mainly associated with language functions, indicating
convergent aberrant neural activations associated with FTD (Wensing,
2017). These results support the notion that abnormalities in language-
processing related brain regions and networks underlie FTD symptoms
in schizophrenia (i.e., the “dyssemantic hypothesis”) (Goldberg et al.,
1998); but do not allow to conclude whether FTD also relates to deficits
in circuits involved in higher-order cognitive processes (“dysexecutive
hypothesis™) (Barrera et al., 2005). Furthermore, the use of a generic
concept of FTD entails pooling over heterogeneous symptoms, while the
relatively small number of fMRI studies, which investigated the neuro-
biological correlates separately for positive and negative FTD di-
mensions, suggested distinct  pathophysiological  processes.
Interestingly, altered neural activation in the inferior frontal cortex
(McGuire et al., 2002; Arcuri et al., 2012; Kircher, 2001); as well as
reduced activity and grey matter volume in Wernicke’s area have been
implicated in positive FTD (McGuire et al., 2002; Kircher, 2001a,
2001b). Negative FTD, in turn, was reported to be associated with ab-
normalities in dorso-prefrontal and parietal regions involving executive
and cognitive control processes (Kircher, 2003; McGuire, 1998; Fuentes-
Claramonte et al., 2020). Nevertheless, neural findings for specific FTD
dimensions from these small sample studies require a follow-up in larger
cohorts of schizophrenia patients. On the other hand, region-based ap-
proaches would fall short to detect dysconnection as an important
pathophysiological component that presumably underlies schizophrenia
symptomatology (Pettersson-Yeo et al., 2011; Uhlhaas, 2013; Dong,
2018). Connectivity-based analyses might also help to gain further
insight into the controversy regarding a dyssemantic (Goldberg et al.,
1998) vs. dysexecutive (Barrera et al., 2005) pathogenesis of FTD
symptom dimensions.

Resting-state functional connectivity (rsFC) allows to study brain
organization at the level of synchronized spontaneous neural activity
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(Fox and Raichle, 2007). Importantly, schizophrenia patients show
pronounced neurobiological abnormalities concerning intrinsic con-
nectivity patterns between widespread brain regions and networks
(Pettersson-Yeo et al., 2011; Uhlhaas, 2013; Dong, 2018). However,
rsFC-based studies on FTD in schizophrenia are scarce and previous
results remain inconsistent (Liemburg, 2012; Skudlarski, 2010). Also the
interpretation of prior seed-based rsFC analyses on the revealed circuit-
level neural pathophysiology is likewise varying due to the different
choices of seed regions (Liemburg, 2012; Skudlarski, 2010) In contrast, a
definition of seeds based on regions identified by meta-analyses as
showing convergent aberrant activation associated with FTD facilitates
the identification of FTD-related circuit-level neural pathophysiology
with improved functional specificity and therefore interpretability. This
is because these regions were identified based on prior task-fMRI
studies, representing robust and the most likely brain locations associ-
ating with FTD across many subjects and variations in paradigm (Laird,
2009; Eickhoff et al., 2012). Moreover, correlations found in previous
studies were based on univariate group-level analyses on small and
geographically restricted samples, raising doubts over the reproduc-
ibility and robustness. Multivariable predictive modeling with cross-
validation on multi-site data, in contrast, could not only allow for
identifying a robust neurobiological substrate of FTD, but for assessing
the predictability of the identified neurobiological patterns for individ-
ual FTD severity.

In the present study, we used as seeds the clusters yielded by our
prior meta-analysis (Wensing, 2017). These clusters were identified as
robustly associated with aberrant neural processes engaged during 55
different, but functionally related experiments across 18 prior task-
based fMRI studies on FTD. Based on these robust clusters, we aimed
to identify whole-brain dysconnectivity associated with FTD by gener-
ating seed-to-whole-brain rsFC maps and comparing them between a
multi-site schizophrenia sample and matched healthy subjects. Impor-
tantly, we realized a cross-validation-based feature selection to derive
robust rsFC associative patterns for not only the overall FTD, but also the
positive and negative FTD dimensions assessed by the items taken from
the well-established “Positive and Negative Syndrome Scale” (PANSS)
(Kay et al., 1987). Furthermore, the identified robust seed-to-whole-
brain rsFC patterns were employed as features for predictive modeling
to assess their predictive capacity for individual FTD severity in out-of-
sample data. Finally, regions with connectivity patterns robustly asso-
ciated with FTD were functionally characterized to reveal their neuro-
cognitive functions (Laird, 2009; Genon et al., 2018). We hypothe-
sized that 1) differential seed-to-whole-brain rsFC patterns are present in
schizophrenia patients compared to healthy controls; 2) the positive,
negative, and composite FTD symptom dimensions would be associated
with differential rsFC patterns in schizophrenia; 3) the identified robust
neurobiological profile of FTD would allow for out-of-sample prediction
of individual FTD dimension scores and involves regions related to
higher-order cognitive functions.

2. Materials and methods
2.1. Sample

We jointly investigated 276 subjects recruited from seven sites. In
detail, a total of 121 DSM-IV diagnosed schizophrenia patients and 121
healthy controls from five independent medical centers located in
Europe (Aachen-1, Gottingen, Groningen and Utrecht) and the USA
(Albuquerque, NM; i.e., the COBRE sample; 80% of the subjects initially
enrolled [COBRE#1]) were included as the main sample (Table 1 &
Supplementary material S1). Within each site, patients and controls
were matched for age, gender (Supplementary Table 1), and head mo-
tion during scans (root mean-square [RMS] movement and DVARS
[temporal derivative of the RMS of the fMRI time series across voxels]3%)
(all p > 0.05) (Supplementary Table 2). These demographic and
movement variables did not differ significantly between the two groups
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Table 1
Clinical characteristics of schizophrenia patients in the main sample.
Aachen-1 Albuquerque Gottingen Groningen Utrecht Total P-value'
(COBRE#1)
N 13 51 27 20 10 121
Illness duration 8.08 £ 8.66 15.54 + 12.64 6.67 + 7.69 9.60 £+ 10.46 5.11 +£5.30 11.03 + 11.16 0.002
Antipsychotic treatment
FGA 0 3 1 2 1 7
SGA 13 43 19 8 4 87
FGA + SGA 0 2 5 0 0 7
Missing 0 3 2 10 5 20
OZP-equivalent2 21.72 +10.05 14.84 + 10.96 25.06 + 11.49 14.55 + 8.31 17.10 £+ 12.42 18.81 + 11.60 0.001
PANSS
FTD composite 4 (4-9) 8 (5-14) 7 (4-14) 6 (4-14) 10 (6-14) 7 (4-14) <0.001
FTD positive 1(1-4) 1(1-5) 2(1-5) 1(1-4) 2(1-4) 1(1-5) 0.025
(P2 item)

FTD negative (items N5 + N6 + N7) 3(3-6) 6 (3-13) 5(3-9) 4(3-10) 7 (4-11) 5(3-13) <0.001
Positive 14.54 + 7.08 14.35 + 4.45 11.67 + 3.23 14.74 £ 5.30 17.44 £+ 2.96 14.06 + 4.80 0.016
Negative 9.85 + 4.04 15.12 + 5.25 13.04 + 4.40 13.21 + 4.45 15.33 &+ 4.56 13.78 + 4.99 0.007
General 24.15 + 5.66 29.41 +8.12 27.81 £5.93 27.00 + 8.97 31.33 £ 8.70 28.26 £7.71 0.145
Total 48.54 + 14.64 58.88 + 13.36 52.52 + 10.00 52.11 + 18.28 64.11 + 13.82 55.62 + 14.25 0.019

Note: Data are mean + SD or median (range). N, number of subjects per research site; FGA, first-generation antipsychotic; SGA, second-generation antipsychotic;
PANSS, Positive and Negative Symptom Scale; FTD, formal thought disorder; OZP, olanzapine. IStatistical comparison between sites was conducted using either one-
way analysis of variance (ANOVA) or Kruskal-Wallis test where appropriate. Dosage in mg/day.

across all sites (p > 0.05). Duration of disease differed significantly be-
tween sites (p = 0.002). An independent dataset (N = 34), including the
COBRE#2 sample (the 20% remaining patients that were not enclosed in
the main sample), as well as nine DSM-IV-TR and nine ICD-10 diagnosed
schizophrenia patients from two new sites of Lille and Aachen-2 (Sup-
plementary Table 3), were used for external validation of the predictive
models. The main and the validation samples were comparable in de-
mographic variables (all p > 0.05). For each site, subjects gave fully
written informed consent and study approval was given by the respec-
tive ethics committees/insitutional review boards. Additional approval
to pool and re-analyze data was provided by the ethics committee of the
RWTH Aachen University, Aachen, Germany.

2.2. Clinical characteristics

Severity of psychopathology was assessed using the PANSS (Table 1
and Supplementary Table 3). Four PANSS items, “conceptual disorga-
nization” (P2), “difficulty in abstract thinking” (N5), “lack of sponta-
neity and flow of conversation” (N6) and “stereotyped thinking” (N7)
were used for assessing the FTD symptoms (Chen et al., 2014; Horn
et al., 2010; Nagels, 2012). Although no definite consensus exists on the
exact set of PANSS items to assess FTD in schizophrenia, we have chosen
the most consistently selected items from the literature (Chen et al.,
2014; Horn et al., 2010; Nagels, 2012; Tan et al., 2014). Of note, this
choice allowed us to differentiate between the positive and negative
symptom dimension of FTD, which was a major goal of this study.
Specifically, according to their definitions (i.e., belonging to positive or
negative symptoms in schizophrenia) in the PANSS, the item P2, which
measures disruption of goal-directed sequencing (manifested as
circumstantiality, tangentiality, loose associations, or illogicality), was
used to assess the severity of positive FTD. The items N5 (impairment in
the use of the abstract-symbolic mode of thinking), N6 (reduced fluidity
and productivity of the verbal-interactional process) and N7 (expressed
as rigid, repetitious, or barren thought content) were subsumed under
“negative FTD” (Horn et al., 2010; Nagels, 2012), defining the FTD di-
mensions as a dichotomous structure as suggested by Andreasen
(Andreasen, 1979). The composite score was calculated as the sum
scores of the positive and the negative FTD items (i.e., P2, N5, N6, N7).
Patients in the validation dataset showed more severe FTD symptoms
than those in the main sample (p < 0.001), which would help to indicate
the sensitivity of our predictive modeling. Dosages of current antipsy-
chotic medication were transformed into olanzapine equivalents
(Gardner et al., 2010).

2.3. Definition of seed regions

We used as seeds three left-lateralized clusters that were identified
by a previous coordinate-based activation likelihood estimation (ALE)
(Eickhoff et al., 2012) meta-analysis on functional brain correlates of
FTD (Wensing, 2017). These clusters were located in the superior tem-
poral gyrus (STG) (110 voxels, volume: 880 mm3), the dorsal posterior
middle temporal gyrus (dpMTG) (109 voxels; volume: 872 mm3), and
the ventral posterior (vp)MTG (71 voxels; volume: 568 mm?) (Fig. 1A).

2.4. FMRI data acquisition and preprocessing

All datasets were scanned (Supplementary Tables 4 & 5) and pre-
processed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and the
FMRIB’s independent component analysis (ICA)-based X-noiseifier (FIX)
for denoising the fMRI data (Salimi-Khorshidi et al., 2014; Griffanti
et al., 2014; Liu et al., 2020) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL)
(Supplementary material S2.1). One subject in the control group and
two subjects in the patient group (main sample) showed excessive head
movement of DVARS > 5 and were, hence, excluded from subsequent
analyses. The threshold of DVARS = 5 is roughly equivalent to a
framewise displacement of 0.5 mm (Power et al., 2012); which has been
commonly used in the literature (Power et al., 2015) and was employed
in our prior work with similar patient cohorts (Chen, 2020, 2021).
Within the patient group, age and duration of disease did not correlate
with any FTD dimension. FTD dimensional-scores did not differ between
male and female patients (all p > 0.05). Head motion (DVARS) signifi-
cantly differed between sites (p < 0.001, one-way ANOVA), but was not
significantly correlated with the scores for any FTD dimensions after
adjusting for age/gender/site effects (all p-values > 0.09). Nevertheless,
to avoid any (possible) contributions of head motion to the prediction of
individual FTD dimension scores, head motion effects were adjusted in
our predictive modeling (Dubois, 2018; Smith and Nichols, 2018). We
regressed out white matter and CSF signals from the overall time-series,
but not the global mean signals, since global signal removal (GSR) is still
controversial in preprocessing (Murphy and Fox, 2017) and a previous
study showed that GSR would obscure an effect predictive of symptoms
in schizophrenia patients (Yang et al., 2014). Seed to whole-brain rsFC
maps were generated by calculating the Fisher’s z-transformed linear
Pearson correlations between the first eigenvariate of the seed time-
series and the time-series of all other grey matter voxels of the entire
brain (Kraguljac, 2017).
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Fig. 1. Seed regions used for functional connectivity map construction and illustration of the overall feature selection and multivariable predictive modeling
procedure. A) We used three clusters as seeds that showed consistently aberrant activation associated with FTD in our previous activation likelihood estimation based
meta-analysis (Wensing, 2017). MNI coordinates: left superior temporal gyrus (STG; —54, —28, 4); ventral posterior middle temporal gyrus (vpMTG; —46, —50, 22);
and dorsal posterior MTG (dpMTG; —56, —56, 12). B) Flowchart illustrates the identification of rsFC patterns that were robustly associated with FTD specific di-
mensions, and the use of the identified rsFC as features for predictive modeling. GLM, general linear model; RVM, relevance vector machine; rsFC, resting-state

functional connectivity; FTD, formal thought disorder.

2.5. Between-group comparison of seed-to-whole-brain rsFC

A general linear model (GLM) was constructed for each of the seed
regions by including group (schizophrenia vs. controls) as a categorical
variable to identify voxels that were differentially connected to the seed
regions in schizophrenia patients compared to healthy controls. Effects
of age, gender, site, and head motion (DVARS) were controlled within
the GLMs. The resulting statistical maps were thresholded at cluster-
level family-wise error corrected p < 0.05 (cluster-forming threshold
p < 0.001) according to the random field theory (RFT).

2.6. Identification of robust rsFC correlates of FTD through repeated
cross-validation and multivariable predictive modeling: Predicting
individual FTD dimension scores

We, next, implemented a 10-fold cross-validation procedure to
identify robust seed-to-whole-brain rsFC correlates of FTD (composite,
negative, and positive) dimensions and the process was nested within

predictive modeling to test the predictive capacity of the identified rsFC
patterns for individual FTD dimensional-scores in out-of-sample data.
We deliberately chose a supervised feature-extraction procedure in
predictive modeling, as the identification of seed-to-whole-brain rsFC
patterns robustly associated with FTD was our main aim. In each 10-fold
process, the original sample was randomly divided into ten equal-sized
groups and each of the groups (i.e., the test sample) was predicted once.
Hence, there were ten training samples with 8/9 patients shared. This
resembles a ten times repeated subsampling procedure, during which
90% subjects are randomly drawn from the original data without
replacement. Basically, if there are rsFC patterns stably and repeatedly
detected as significantly associated with FTD irrespective of data
perturbation, these patterns can be reasonably regarded as robust. The
whole procedure can be parsed into three steps (Fig. 1B):

i) Identification of rsFC patterns significantly associated with FTD
within the training samples



J. Chen et al.

Within each training sample, three univariate GLMs (one for each
seed) were constructed to identify significant clusters with rsFC to the
seeds significantly associated with FTD dimensional scores after con-
trolling for age, gender, site, and head motion effects. Statistical maps
were corrected for multiple comparisons by using the same RFT
approach described above. This is also critical for predictive modeling to
avoid test-to-training information leakage (Dubois, 2018; Shen, 2017).

ii) Feature extraction

Significant clusters were then used as masks to determine the voxel
positions where the Fisher’s z-transformed rsFC values were extracted for
both the training and the test samples. The extracted voxel-wise rsFC
values were averaged over the voxels within each significant cluster. The
mean rsFC values for all of the detected significant clusters were used as
features for predictive modeling. This supervised feature selection
strategy resembles “connectome-based predictive modeling” (CPM)
(Shen, 2017); as a long-standing feature selection method described in
machine learning literature (Guyon and Elisseeff, 2003; Kohavi and
John, 1997); which could effectively improve predictive performance
while discarding irrelevant variables (Finn et al., 2015; Beaty et al.,
2018; Rosenberg et al., 2016).

iii) Predictive modeling

Since the extracted rsFC values were the original Fisher’s z-trans-
formed values, i.e., not de-confounded, a confound-adjustment pro-
cedure was performed prior to predictive modeling to control for
confounding effects that may contribute to the predictions. More spe-
cifically, in keeping with the recommended strategy (Pervaiz et al.,
2020); confounding effects of age, gender, site and head motion
(DVARS) on both the extracted features and the FTD dimensional scores
were adjusted. To avoid data leakage within cross-validation (Dubois,
2018; Snoek et al., 2019), confound-adjustment was conducted by
learning the confound regression models within the training-set and
applying the regression weights to both the training and the test sets to
obtain confound-adjusted training and test sets (Dubois, 2018; Snoek
et al., 2019; More et al., 2020). Then, a relevance vector machine (RVM)
(Tipping, 2001) (Supplementary material S2.2.1) was employed to
realize multivariable regression through probabilistic Bayesian learning.
That is, within the training-set, the confound-adjusted rsFC features
were fed into RVM model training with confound-adjusted FTD
dimension scores as the target variable. Then, RVM weights from the
trained model were applied to the confound-adjusted rsFC features in
the test-set to obtain the predicted FTD dimensional-scores for out-of-
sample data.

The folds were stratified to ensure the proportion of patients between
sites in each fold was (approximately) equal to that in the entire sample,
rendering the inclusion of sites in training and test sets balanced.
Holding out each of the ten groups once in the process allowed to
generate a probability map to denote how many times the significant
clusters were identified, and to evaluate the prediction performance
across the entire data set by computing the Pearson’s correlation coef-
ficient and the normalized root-mean-square-error (nRMSE) between
the (confound-adjusted) FTD dimensional-scores and their out-of-
sample predictions. To ensure a reliable estimation, the 10-fold pro-
cess described above was repeated 50 times using random initial splits of
the data. The obtained correlation coefficients and nRMSE values were
averaged over the all repetitions, and the clusters identified as signifi-
cantly associated with FTD dimensions were accumulated (maximal
selection number = 500). Clusters with a higher selection number refer
to more robustly associated given rsFC patterns with FTD.

A leave-one-site-out (LOSO) cross-validation analysis was followed
to assess the generalization performance across sites (Supplementary
material S2.2.2). The resulting five correlation coefficients and nRMSE
values were averaged. We also pooled the predicted (confound-

Neurolmage: Clinical 30 (2021) 102666

adjusted) FTD dimensional-scores from the left-out sites and then
correlated them with the actual (confound-adjusted) scores. Of note, the
folds in 10-fold cross-validation and the sites in LOSO analysis were not
independent of each other and, hence, using parametric statistics to
assess the cross-validated performance is problematic (Noirhomme,
2014). Here, significance of the 10-fold and LOSO cross-validation-
based correlations against chance was assessed through permutation
testing (Dubois, 2018; Combrisson and Jerbi, 2015) by shuffling the FTD
dimensional scores for 5000 times while keeping everything else exactly
the same (Supplementary material S2.2.3; lowest p = 0.0002, right-
tailed). We also applied the same permutation testing to the nRMSE
metric for assessing the significance of cross-validated prediction. The
LOSO analysis further allowed to plot prediction accuracy (because the
Pearson correlation coefficient is sample-size dependent (Yarkoni,
2009), here we used nRMSE) for each of the left-out sites as a function of
sample size (i.e., number of patients).

Finally, we tested the predictability of the robust rsFC patterns
identified (only) within the main sample for individual FTD
dimensional-scores in an independent sample (Supplementary material
S$2.2.4) to avoid potential circularity, as discussed previously (Krie-
geskorte et al., 2009). Briefly, clusters that were repeatedly identified as
significantly associated with FTD specific dimensions within the main
sample through 10-fold cross-validation and LOSO analyses were used
as masks to extract the seed-to-cluster rsFC patterns for both the main
and the validation samples. Effects of age, gender, site, and head motion
were adjusted accordingly. Then, the RVM model trained within the
main sample was applied to the validation sample to derive the pre-
dicted FTD dimensional-scores. Prediction performance was evaluated
as described above. Significance of the correlation was determined by
parametric statistical tests.

In addition, control analyses were performed in predictive modeling
by including olanzapine-equivalent dosage as confounder. To test for the
specificity of FTD-associated rsFC patterns in the prediction of FTD di-
mensions, the model trained based on the rsFC patterns that significantly
associated with FTD was used for an analysis to predict other positive
symptoms of hallucinations as well as the overall symptom severity (i.e.,
total PANSS score). Given the fact that our FIX-based denoising step in
the preprocessing of the resting-state data has used matching training
data (i.e., weights) supplied by FIX to classify noise components rather
than training the weights based on our own samples due to the small
sample size per site, we repeated our predictive modeling analyses by
using rsFC maps generated from the images preprocessed using another
ICA-based approach Automatic Removal of Motion Artifacts (ICA-
AROMA) (Pruim et al., 2015; Ciric et al., 2018; Parkes et al., 2018)
which does not require classifier re-training for denoising (instead of
ICA-FIX). Finally, an unsupervised approach was applied to supplement
our supervised feature selection method as elaborated above. In the
unsupervised feature selection method, there was no relatedness be-
tween the selection of features and the target variable to be predicted,
where we tested for whether the rsFC between the seeds and their
significantly connected regions could predict the scores of specific FTD
dimensions out-of-sample (details in Supplementary material S2.2.5).

2.7. Functional characterization of the identified brain regions

To characterize the associated functional properties of the identified
clusters showing differential rsFC patterns with the three seeds in
between-group comparisons and the clusters whose rsFC to the seeds
robustly associated with FTD dimensions in patients, we conducted a
functional characterization by implementing quantitative “forward
inference” and “reverse inference” (Cieslik, 2012; Clos et al., 2013;
Genon, 2017) (Supplementary material S2.3) on the sorted “behavioral
domain” and “paradigm class” meta-data in the BrainMap database
(Laird, 2009) (http://brainmap.org/) as collected from prior task-fMRI
studies.
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3. Results

3.1. Differential rsFC patterns in schizophrenia patients compared to
healthy controls

For the left STG seed, we found decreased rsFC for schizophrenia
patients compared to healthy controls with one cluster mainly encom-
passing the left fusiform gyrus and another one located in the left
anterior MTG. Increased rsFC with this seed was found for a cluster in
the right superior medial frontal gyrus (Fig. 2A, Supplementary Table 6).
For the left dpMTG seed, we found one cluster indicating hyper-
connectivity in schizophrenia patients compared to healthy controls in
the bilateral dorsal thalamus (Fig. 2B, Supplementary Table 6). We did
not find any significant between-group differences for the left vpMTG
seed.

3.2. Robust rsFC correlates of FTD dimensions and their predictability in
individual FTD dimensional scores

3.2.1. Identification of clusters with rsFC to the seeds that are robustly
associated with FTD dimensions

Significant clusters associated with the negative and the composite
FTD scores were too few (i.e., in no>5% of the in total 500 training
samples within the repeated 10-fold cross-validation) for each seed re-
gion to be considered as robust and hence, were not included in subse-
quent predictive modeling analyses. In contrast, multiple significant
clusters were identified for the positive FTD dimension. For each seed
and each 10-fold cross-validation, significant clusters were accumulated
to illustrate how robust the rsFC between these clusters and a particular
seed relates to the severity of positive FTD. Clusters more frequently
detected as significantly associated with positive-FTD in the repeated
10-fold process were considered as more robust (Fig. 3A). As afore-
mentioned, clusters identified as significant in<5% of the in total 500
training samples within the 50 times repeated 10-fold cross-validation

A.

Left STG seed

L
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were discarded due to being regarded as too unstable. Clusters located
in the right dorso-prefrontal region (mainly middle frontal gyrus [MFG])
were more frequently detected as significantly associated with the
positive-FTD in the repeated 10-fold process than two clusters that were
located in the right inferior temporal cortex and the supramarginal
gyrus. RsFC of these clusters to the left STG seed was co-varying nega-
tively with the positive-FTD (Fig. 3A). For the left dpMTG seed, clusters
located in the right MTG were identified as showing significant positive
associations with the positive FTD dimension scores. RsFC between the
clusters stretching across the right inferior parietal lobule (IPL) and the
left vpMTG seed was found to robustly and negatively associate with the
positive FTD dimension in 491 out of the overall 500 training samples.

3.2.2. Features and predictive modeling

Within each cross-validation, significant rsFC patterns for the three
seeds identified in the training samples were combined to construct the
feature space for RVM model training within the training samples to
predict individual positive FTD scores in the test samples. The predicted
(confound-adjusted) positive FTD scores showed a significant above-
chance positive correlation with the actual (confound-adjusted) scores
(r = 0.30, p = 0.0048; nRMSE = 0.97, p = 0.0060; after excluding a
suspected outlier of predicted score: r = 0.25, p = 0.0168; nRMSE =
0.99, p = 0.0350; Fig. 3B). Outliers (i.e., the unusual predicted FTD
scores) were identified first by visual inspection and, second, by calcu-
lating the standardized residuals (Altman and Krzywinski, 2016). For
the latter approach, predicted scores with a standardized residual > 3 (in
absolute value) were regarded as outliers, based on a commonly used
cutoff in literature (Guo et al., 2015; Lehmann, 2013). This approach
was applied, because outlier values may optimistically bias the estima-
tion of the correlation between the observed FTD scores and their
predictions.

LOSO analysis corroborated the 10-fold results (r = 0.32, averaged
over the left-out sites; correlation after pooling the left-out sites: r =
0.26, p = 0.0034; nRMSE = 0.99, p = 0.0024 [the significance held after

B.
Left dpMTG seed
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Fig. 2. Differential resting-state functional connectivity (rsFC) with the seed regions in schizophrenia patients compared to healthy subjects. A) For the left STG seed,
clusters showing decreased (blue) rsFC for schizophrenia patients were located in the left fusiform gyrus and left middle temporal gyrus, while one cluster in the right
medio-superior frontal gyrus showed increased rsFC (red). B) For the left dpMTG seed, we identified one cluster indicating increased rsFC in the bilateral dorsal
thalamus of schizophrenia patients, which is displayed on both axial sections and a three-dimensional thalamic surface. The above significant clusters were identified
at a cluster-level with family-wise error corrected p < 0.05, cluster-forming threshold of p < 0.001 at voxel level. L, left; R, right; MFG, middle frontal gyrus; vpMTG,
ventral posterior middle temporal gyrus; STG, superior temporal gyrus; dpMTG, dorsal posterior middle temporal gyrus. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Cross-validation based feature selection and prediction of individual positive formal thought disorder (FTD) scores from resting-state functional connectivity
(rsFC). A) For each seed region and each 10-fold cross-validation, clusters whose rsFC to the seeds that were significantly associated with positive-FTD were
accumulated. Mean rsFC values extracted within these clusters were used as features. Frequency of the clusters selected in the overall general linear models con-
ducted on the 500 training samples is color-coded from blue to red. The three seed regions are displayed on a transparent brain. Blue lines indicate negative as-
sociations while the red line indicates positive association. Partial correlation coefficients (adjusted for age, gender, and head motion parameters) between the
identified significant rsFC patterns and the positive FTD scores, derived from the repeated 10-fold cross-validation, were shown in three boxplots separately for the
three seeds (red line depicts the median, green diamond depicts the mean, whiskers represent the 5th and 95th percentiles); B) Scatter shows the Pearson’s cor-
relation between the actual (confound-adjusted) positive-FTD scores and their predictions in 10-fold cross-validation within the main sample. The predicted data
were the average predictions for each subject across the repeated 10-fold cross-validation runs. The regression line in blue was fitted with the suspected “outlier” (i.e.,
the circled blue point), while the dark yellow line was fitted after excluding this “outlier”; C) Brain clusters with rsFC to the seeds that were identified as significantly
associated with positive FTD scores in leave-one-site-out cross-validation within the main sample. Scatter plots show the correlation between the actual positive-FTD
scores and their predictions. The data points were colored differently per site. The regression line in blue was fitted with the suspected “outlier” (i.e., the circled blue
point), while the dark yellow line was fitted after excluding this “outlier”; D) Our RVM model, that trained within the main sample based on the rsFC patterns
extracted from the three most robustly identified brain clusters, was applied to the independent sample for validation. Scatter plot shows the correlation between the
actual positive-FTD scores and their predictions in the independent sample. Shaded areas represent 95% confidence intervals. L, left; R, right; FC, functional con-
nectivity; AT, abstract thinking; FTD, formal thought disorder; STG, superior temporal gyrus; dpMTG, dorsal posterior middle temporal gyrus; vpMTG, ventral
posterior middle temporal gyrus; MFG, middle frontal gyrus; SMG, supramarginal gyrus; ITG, inferior temporal gyrus; IPL, inferior parietal lobule. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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excluding a suspected outlier of predicted score: r = 0.21; p = 0.0126; patterns. Ten-fold cross-validation revealed that models trained based
nRMSE = 1.01, p = 0.0388]; Fig. 3C). In addition, the prediction accu- on the rsFC patterns associated with positive-FTD were not predictive of
racy (nRMSE) did not correlate with the number of subjects in each site hallucinations (r =-0.13, p = 0.86; nRMSE = 1.08, p = 0.61) and overall
(r =0.29, p = 0.63; Fig. S1). symptom severity (r = 0.05, p = 0.21; nRMSE = 1.07, p = 0.51),

We finally validated the predictability of the identified robust rsFC implying the specificity of the positive-FTD associated rsFC patterns in
patterns for the positive FTD dimension in an independent sample. In the prediction of the positive FTD dimension in schizophrenia. As shown
particular, we focused on the clusters located in the right MFG, MTG, in Fig. S2, using an alternative denoising approach of ICA-AROMA
and IPL. Clusters in these regions were detected as significantly associ- largely replicated our main results. Furthermore, through the GLMs
ated with positive FTD in > 60% of the overall 500 10-fold training performed within the main sample implemented as an unsupervised
samples and also significant in LOSO analyses (Fig. 3D). The extracted feature selection approach for predictive modeling, we identified mul-
rsFC values were used as features for RVM model training within the tiple clusters showing significant positive or negative rsFC with the three
main sample. After applying the trained model to the validation sample, seeds (Fig. S3). These significant clusters, irrespective of which seeds
we found that the actual (confound-adjusted) scores were significantly they are connecting, were mainly distributed in precuneus, precentral

correlated with the predictions of our model (r = 0.42, p = 0.013, and temporal regions. Specifically, for the left STG seed, clusters with
nRMSE = 1.32; Fig. 3D). Lower rsFC between left STG seed and right positive rsFC were located in bilateral sensory-motor cortex and STG/
MFG, and higher rsFC between the left dpMTG and right MTG and be- MTG, with negative rsFC located in bilateral middle and superior oc-

tween the left vpMTG and right IPL were associated with more-severe cipital gyrus as well as right IPL. Clusters significantly connected with
positive FTD symptoms. the left dpMTG seed were more widely spread, stretching across bilateral

Additionally, the olanzapine-equivalent dosage of medication did frontal, parietal, temporal, precuneus/posterior cingulate cortex, and
not correlate significantly with the positive FTD dimension score (r = cerebellar areas. Interestingly, clusters showing positive rsFC with the
0.09, p = 0.39) nor with the rsFC in our data (cluster-level corrected p < left vpMTG seed were seated in the lateral hemispheres, while those
0.05), and hence adjusting for olanzapine-equivalent dosage in addition clusters with negative rsFC were medial. Applying RVM models trained
to age, gender, site, and head motion did not alter the predictive within the main sample using the rsFC patterns of these significantly
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connected regions to the validation sample, none of the three FTD di-
mensions were significantly predicted (positive FTD: r = 0.25, p = 0.145;
negative FTD: r=-0.13, p = 0.480; composite FTD: r =-0.05, p = 0.765).

3.3. Functional characterization of the identified brain clusters

Functional profiles for each of the characterized brain clusters,
locating in left fusiform gyrus and MTG, right medio-superior, bilateral
thalamus, right frontal gyrus MFG, MTG, and IPL, was determined by
quantitative forward and reverse inferences on the behavioral domains
and paradigm classes as sorted in the BrainMap database (Laird, 2009;
Genon et al., 2018). Fig. 4 illustrates separately the results for forward
inference (the probability of a special behavioral process relating to
activation in a given cluster) and reverse inference (which tests, if a
given behavioral process is active, when a particular region is activated).
Below, these findings are summarized.

3.3.1. Clusters showing differential rsFC with the seeds in schizophrenia
patients compared to healthy controls
The cluster in the left fusiform gyrus was associated with the
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cognitive domains of speech and memory, together with emotion (anger
and fear) and vision perception. The left MTG cluster was primarily
associated with language (speech and semantics) and social cognition
(theory-of-mind) (Fig. 4A). The cluster in the right medio-superior
frontal gyrus was functionally associated with emotion processing
(Fig. 4A), while the thalamic cluster was involved in emotion processing
(reward and sadness) (Fig. 4B).

3.32.

We focused here on the three clusters that were both associated with
positive FTD in > 60% of the overall 500 10-fold training samples and
significant in LOSO analyses. These three clusters were located in the
MFG, MTG, and Wernicke’s area. Remarkably, none of these clusters
were functionally associated with language-related processes (Fig. 4C).
Rather, they were all significantly associated with higher-order cogni-
tive processes, including working memory, social cognition, and exec-
utive functions. Specifically, the cluster located in IPL was found as
significantly associated with social cognition (theory of mind), executive
function and interoception. The MTG cluster was identified as involved
in action observation. The cluster located in the MFG was associated

Regions showing differential connectivity with the three seeds in between-group comparisons
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Fig. 4. Functional characterization of the identified brain clusters. Bar charts indicating A) functional profiles of the clusters showing differential resting-state
functional connectivity (rsFC) with the two seeds: superior temporal gyrus and dorsal posterior middle temporal gyrus between schizophrenia patients and
healthy controls, and B) functional characterization of the brain clusters whose rsFC to the seeds were identified as robustly associated with the severity of positive
FTD. Quantitative “forward inference” and “reverse inference” experiments were used to determine the functional profile of each cluster. Regions with significant
functional assignments (false discovery rate corrected p < 0.05) are presented. The significant activation likelihood ratios for each cluster with respect to a given
domain or paradigm (forward inference) and the significant probability of a domain’s or paradigm’s occurrence given activation in a cluster (reverse inference) are
depicted separately. The “P (Activation I Domain/Paradigm)” refers to the activation likelihood (in the forward reference) in a significant region given a particular
label (i.e., a behavioral domain or a task paradigm). The “P (Domain I Activation)” refers to the probability of behavioral domains given activation in a particular
brain region, which tests for a regions’ functional profile based on reverse inference. Similarly, the “P (Paradigm I Activation)” represents the probability of paradigm
classes given activation in this particular region. FTD, formal thought disorder; LH, left hemisphere; RH, right hemisphere.
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with working memory.
4. Discussion

Our study identified four brain regions showing differential rsFC
with the three meta-analytically defined FTD-related seeds in schizo-
phrenia patients compared to healthy controls. Following a strict cross-
validation procedure (10-fold and LOSO), rsFC patterns of three other
regions, implicated in executive functions and higher-order cognitive
processes, were identified as robustly associated with the severity of
positive FTD across different patient cohorts, sites and scanners. The
identified rsFC patterns moreover allowed individual prediction of
positive FTD severity in an independent dataset but were not predictive
of other positive symptoms, suggesting that these patterns were an in-
dividual neurobiological substrate closely related to positive FTD.

Evidence from previous task-based fMRI studies corroborates the
notion that the identified brain regions with differential rsFC with the
seeds in schizophrenia patients compared to healthy subjects play a role
in the pathogenesis of FTD. The fusiform gyrus, e.g., one of the three
regions showing differential rsFC with the left STG seed in our study,
was reported as hyperactivated during FTD-associated speech produc-
tion in schizophrenia patients (McGuire et al., 2002). The other region in
the right medio-superior frontal gyrus showed increased rsFC to the STG
seed, which has been found to exhibit increased neural activity during
greater semantic retrieval demands that was significantly correlated
with FTD severity in schizophrenia patients (Ragland, 2008). Also the
thalamic dorso-medial subfield was identified as differentially con-
nected to the left dpMTG seed. The importance of thalamic abnormal-
ities in the pathophysiology of schizophrenia has been discussed in the
context of “cognitive dysmetria”, that is, difficulties in gating informa-
tion, which might result in cognitive deficits on the behavioral level
(Andreasen, 1997; Andreasen et al., 1998). The dorso-medial thalamic
subfield, in particular, has been implicated in speech processing
(Crosson and Hughes, 1987), especially in the retrieval of memory
representations in speech perception (Kotz and Schwartze, 2010). On a
structural level, the dorso-medial region of thalamus, which mainly
projects to the temporal and frontal cortex (Andreasen et al., 1998);
shows convergent evidence for structural changes in schizophrenia pa-
tients (Behrens, 2003). This further corroborates the hypothesis of
dysfunctional fronto-temporo-thalamic networks as a key component in
the pathophysiology of schizophrenia (Nickl-Jockschat, 2011; Ellison-
Wright et al., 2008), and points towards a possible structure—function-
relationship in the thalamus for FTD.

Of note, robust association patterns between rsFC and symptom
severity were only found for the positive FTD dimension. In fact, nega-
tive FTD symptoms corresponded to three items and the scores of each
negative FTD item were not significantly correlated with seed-to-whole-
brain rsFC patterns. This indicates that rsFC might be less sensitive in
detecting negative than positive FTD. Interestingly, significant clusters
from our group comparison on the one hand and our correlation ana-
lyses on the other were spatially not overlapping. This seemingly
counterintuitive finding, however, is well in line with previous struc-
tural MRI findings that showed a similar dissociation between regions
implicated in group comparisons and correlations with FTD severity
(Sans-Sansa, 2013). Such a dissociation might suggest a distinct sub-
network mediating positive FTD that is neurobiologically largely
distinct from the circuits that mediate a general predisposition for FTD
(regardless, whether positive or negative). The notion of a global
vulnerability mediated by such a network might also explain, why there
is no correlation between the composite FTD scores and rsFC.

Remarkably, the identified rsFC patterns were predictive of indi-
vidual positive-FTD severity in novel patients. Previous findings in the
literature on correlations between fMRI parameters and symptom
severity so far mostly relied on group level analyses, but fell short to
allow individual predictions (Bzdok and Meyer-Lindenberg, 2018),
although pioneering predictive studies have successfully identified

Neurolmage: Clinical 30 (2021) 102666

robust neuromarkers for attention (Rosenberg, 2016) and creative
ability (Beaty, 2018) in healthy populations. We would argue that the
stably identified (and hence) robust rsFC patterns in repeated cross-
validation should constitute a reliable neurobiological substrate of the
positive FTD dimension in schizophrenia.

Brain regions whose rsFC with the temporal seeds that identified as
robustly associated with positive-FTD were functionally linked to ex-
ecutive and higher-order cognitive processes including working memory
and social cognition. Findings from previous task-based fMRI studies
implicated abnormal neural activation in brain regions (e.g., the Wer-
nicke’s area) involved in the production of coherent speech as essential
for positive FTD symptoms in schizophrenia (McGuire et al., 2002;
Kircher, 2001a, 2001b). Our own study focused on functional connec-
tivity and implicated a link between positive FTD and brain regions
involved in higher-order cognitive processing, thus, extending these
previous findings. Previous task-based studies have implicated
abnormal neural activations of dorsal prefrontal regions in negative FTD
(Kircher, 2003; McGuire, 1998; Fuentes-Claramonte et al.,). Also our
results have implicated dorsal prefrontal regions to be associated with
positive FTD, however, based on their connectivity patterns, not on their
regional activity. These dorsal prefrontal regions are associated with
higher order cognitive processes, such as working memory. Our results
would strengthen the notion that brain regions involved in executive
functioning contribute at least to positive symptom severity. These
findings would suggest also a dysexecutive component in positive FTD,
while certainly also a dyssemantic contribution seems to be highly
relevant. These findings provide new clues to a long-discussed contro-
versy on FTD in schizophrenia (Barrera et al., 2005).

Different from identifying FTD significantly associated regions as a
supervised feature selection procedure in predictive modeling, our
additional predictive analyses employing an unsupervised approach
which selected as features the rsFC patterns of regions showing signifi-
cant positive or negative rsFC with the seeds, did not reveal a significant
prediction of any of the three FTD dimensions in the validation sample.
This corroborated the notion in previous studies that supervised feature
selection could effectively improve prediction performance. (Shen,
2017) It needs to be cautioned, though, that independent samples,
which are not part of the supervised feature selection process, are
required for validation, so as to avoid circularity, obtain undistorted
statistics, and therefore, valid predictive results. (Kriegeskorte et al.,
2009) Comparatively, in unsupervised approaches, the feature selection
criteria are not related to the target variable to be predicted, and hence
different hypotheses can be raised in addition to supervised predictive
modeling as we shown here. Future studies incorporating both the un-
supervised and supervised feature selection approaches are encouraged
in moving fMRI toward predictive clinical utility in psychiatry.

Several limitations need to be discussed. First, the PANSS, compared
to, e.g., the TLC (Kircher et al., 2018), is not a scale that was designed for
assessing more fine-grained subcategories of FTD symptoms. However,
using relevant items from this widely used and well-established rating
scale allows the pooling of data across multiple acquisition sites, and,
thus, allows comparisons across populations and different treatment
regimens (for a more detailed discussion: Supplementary material S4).
Second, the effect size of the correlation between the predicted and
actual ratings was moderate. However, despite the clinical complexity of
the population and the heterogeneities arising from pooling data from
multiple medical centers with different scanners and settings, the cur-
rent prediction accuracy was similar to those previously reported for
predicting, e.g., creativity (Beaty, 2018) and memory performance
(Persson et al., 2018), from resting-state data in healthy populations (r-
values mostly around 0.2-0.35). Third, there might be concerns
regarding potential site effects on prediction. To mitigate this kind of
concerns, we first adjusted site effects on both rsFC and FTD dimensions
sores within 10-fold cross-validation, and then implemented LOSO
which confirmed the 10-fold results. The generated predictive model
was, moreover, validated in an independent sample. Also the prediction
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accuracy was not site-dependent. We were primarily focusing on the
pooled effects and including small sites would add variance to make the
analysis more conservative. Forth, we acknowledge that patients were
on their regular medication as prescribed by the attending psychiatrists
at the time of data acquisition. In general, antipsychotic medication does
affect on brain metabolism and blood flow in schizophrenia (Miller,
1997), leading to subsequent BOLD signal changes. However, as anti-
psychotics are used to target a broad range of positive symptoms
(Liemburg et al., 2012), e.g., hallucinations and delusions, and not
positive FTD, in specific, medication effects should largely represent a
source of random variation when analyzing the neurobiological sub-
strates of FTD in our data. Such noise would effectively obscure robust
brain functional associations for FTD, and, in particular, make it harder
to train algorithms that work well for out-of-sample prediction of FTD
scores. We would argue that the current results should not be driven by
medication effects, but rather represent a solid neurobiological basis for
the positive FTD in schizophrenia.

To conclude, we here used three meta-analytically defined seeds to
identify rsFC patterns in schizophrenia patients related to FTD. Associ-
ations between rsFC patterns and positive FTD scores we identified were
robust that they allowed an individual prediction of symptom severity in
patients and, thus, should delineate a robust neurobiological profile for
positive FTD. Finally, the positive FTD dimension was found to func-
tionally associate with higher-order cognitive functions, suggesting a
dysexecutive contribution to the pathophysiology of positive FTD in
schizophrenia.
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