000893855 001__ 893855
000893855 005__ 20240610120430.0
000893855 0247_ $$2doi$$a10.1109/TTHZ.2020.3034815
000893855 0247_ $$2ISSN$$a2156-342X
000893855 0247_ $$2ISSN$$a2156-3446
000893855 0247_ $$2Handle$$a2128/28086
000893855 0247_ $$2altmetric$$aaltmetric:105476800
000893855 0247_ $$2WOS$$aWOS:000645862300009
000893855 037__ $$aFZJ-2021-02879
000893855 041__ $$aEnglish
000893855 082__ $$a530
000893855 1001_ $$0P:(DE-HGF)0$$aVolkov, Oleg$$b0
000893855 245__ $$aIn Situ Hilbert-Transform Spectral Analysis of Pulsed Terahertz Radiation of Quantum Cascade Lasers by High- T c Josephson Junctions
000893855 260__ $$aNew York, NY$$bIEEE$$c2021
000893855 3367_ $$2DRIVER$$aarticle
000893855 3367_ $$2DataCite$$aOutput Types/Journal article
000893855 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625908912_26579
000893855 3367_ $$2BibTeX$$aARTICLE
000893855 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893855 3367_ $$00$$2EndNote$$aJournal Article
000893855 520__ $$aWe have studied the applicability of high- Tc Josephson junctions (JJs) and Hilbert-transform spectral analysis (HTSA) for characterization of pulsed terahertz (THz) radiation. We have reconsidered the extension of HTSA into the THz range, including an impact of such emerging factors as nonequilibrium voltage fluctuations and dc Joule heating in high- Tc JJs, and found an unexpected weak temperature dependence of Josephson linewidth δf and a spectral dependence δf(f) with a minimum. Due to this analysis, we have chosen YBa 2 Cu 3 O 7-x bicrystal JJs for experimental study. The JJs have analyzed pulsed THz radiation from quantum cascade lasers (QCLs) located in the same cryogenic environment at 50 K. The spectra recovered by the JJ with Rn = 43 Ω consist of a line with a central frequency around 2.2 THz, which have a symmetrical form and the linewidth of 90 GHz close to the intrinsic Josephson linewidth of this JJ. The spectra measured by the JJ with Rn = 7 Ω and the intrinsic Josephson linewidth of 16 GHz consist of several lines at the frequencies fi around 2.2 THz, which are due to the excitation of different resonant modes in the active volume of the QCL. The difference between the fitted central frequencies f 2 - f 1 of the strong lines and the ratio of their intensities are in agreement with the spectrum of the same QCL measured by Fourier spectroscopy. The developed technique paves the way for detailed and rapid characterization of pulsed THz sources in the frequency domain.
000893855 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893855 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893855 7001_ $$0P:(DE-HGF)0$$aPavlovskiy, Valery$$b1
000893855 7001_ $$0P:(DE-Juel1)144210$$aGundareva, Irina$$b2
000893855 7001_ $$00000-0002-8414-7653$$aKhabibullin, Rustam$$b3$$eCorresponding author
000893855 7001_ $$0P:(DE-Juel1)130621$$aDivin, Yuriy$$b4$$eCorresponding author
000893855 773__ $$0PERI:(DE-600)2585725-3$$a10.1109/TTHZ.2020.3034815$$gVol. 11, no. 3, p. 330 - 338$$n3$$p330 - 338$$tIEEE transactions on terahertz science and technology$$v11$$x2156-3446$$y2021
000893855 8564_ $$uhttps://juser.fz-juelich.de/record/893855/files/09244592.pdf$$yRestricted
000893855 8564_ $$uhttps://juser.fz-juelich.de/record/893855/files/draft_Proof_hi.pdf$$yOpenAccess
000893855 909CO $$ooai:juser.fz-juelich.de:893855$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144210$$aForschungszentrum Jülich$$b2$$kFZJ
000893855 9101_ $$0I:(DE-HGF)0$$60000-0002-8414-7653$$aExternal Institute$$b3$$kExtern
000893855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich$$b4$$kFZJ
000893855 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893855 9141_ $$y2021
000893855 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T THZ SCI TECHN : 2019$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893855 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000893855 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000893855 920__ $$lyes
000893855 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000893855 9801_ $$aFullTexts
000893855 980__ $$ajournal
000893855 980__ $$aVDB
000893855 980__ $$aUNRESTRICTED
000893855 980__ $$aI:(DE-Juel1)PGI-5-20110106
000893855 981__ $$aI:(DE-Juel1)ER-C-1-20170209