000893856 001__ 893856
000893856 005__ 20240507205534.0
000893856 0247_ $$2doi$$a10.1093/braincomms/fcab115
000893856 0247_ $$2Handle$$a2128/28419
000893856 0247_ $$2pmid$$a34396100
000893856 0247_ $$2WOS$$aWOS:000734327400004
000893856 0247_ $$2altmetric$$aaltmetric:117395493
000893856 037__ $$aFZJ-2021-02880
000893856 082__ $$a610
000893856 1001_ $$0P:(DE-HGF)0$$aPoeppl, Timm B$$b0$$eCorresponding author
000893856 245__ $$aPrediction of response to repetitive transcranial magnetic stimulation in phantom sounds based on individual brain anatomy
000893856 260__ $$a[Großbritannien]$$bGuarantors of Brain$$c2021
000893856 3367_ $$2DRIVER$$aarticle
000893856 3367_ $$2DataCite$$aOutput Types/Journal article
000893856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715084784_818
000893856 3367_ $$2BibTeX$$aARTICLE
000893856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893856 3367_ $$00$$2EndNote$$aJournal Article
000893856 520__ $$aNoninvasive brain stimulation can reduce severity of tinnitus phantom sounds beyond time of stimulation by inducing regional neuroplastic changes. However, there are no good clinical predictors for treatment outcome. We used machine learning to investigate whether brain anatomy can predict therapeutic outcome. Sixty-one chronic tinnitus patients received repetitive transcranial magnetic stimulation of left dorsolateral prefrontal and temporal cortex. Before repetitive transcranial magnetic stimulation, a structural magnetic resonance image was obtained from all patients. To predict individual treatment response in new subjects, we employed a support-vector machine ensemble for individual out-of-sample prediction. In the cross-validation, the support-vector machine ensemble based on stratified subsampling and feature selection yielded an area under the curve of 0.87 for prediction of therapy success in new, previously unseen subjects. This corresponded to a balanced accuracy of 83.5%, sensitivity of 77.2%, and specificity of 87.2%. Investigating the most selected features showed the involvement of auditory cortex but also revealed a network of nonauditory brain areas. These findings suggest that idiosyncratic brain patterns accurately predict individual responses to repetitive transcranial magnetic stimulation treatment for tinnitus. Our findings may hence pave the way for future investigations into precision treatment of tinnitus, involving automatic identification of the appropriate treatment method for the individual patient.
000893856 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893856 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893856 7001_ $$0P:(DE-HGF)0$$aSchecklmann, Martin$$b1
000893856 7001_ $$0P:(DE-HGF)0$$aSakreida, Katrin$$b2
000893856 7001_ $$0P:(DE-HGF)0$$aLandgrebe, Michael$$b3
000893856 7001_ $$0P:(DE-HGF)0$$aLangguth, Berthold$$b4
000893856 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b5
000893856 773__ $$0PERI:(DE-600)3020013-1$$a10.1093/braincomms/fcab115$$gp. fcab115$$n3$$pfcab115$$tBrain communications$$v3$$x2632-1297$$y2021
000893856 8564_ $$uhttps://juser.fz-juelich.de/record/893856/files/fcab115.pdf$$yOpenAccess
000893856 909CO $$ooai:juser.fz-juelich.de:893856$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000893856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000893856 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893856 9141_ $$y2021
000893856 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893856 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000893856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN COMMUN : 2022$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-21T13:34:18Z
000893856 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-21T13:34:18Z
000893856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-02-21T13:34:18Z
000893856 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-02-21T13:34:18Z
000893856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000893856 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000893856 920__ $$lyes
000893856 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000893856 980__ $$ajournal
000893856 980__ $$aVDB
000893856 980__ $$aI:(DE-Juel1)INM-7-20090406
000893856 980__ $$aUNRESTRICTED
000893856 9801_ $$aFullTexts