

COMPUTING ELASTIC INTERIOR TRANSMISSION EIGENVALUES

with the boundary element collocation method

STAIMSR2021 | July 6, 2021 | Andreas Kleefeld (joint work with Maria Zimmermann) | Jülich Supercomputing Centre

Motivation

Is there an incident field that does not scatter?

Interior transmission eigenvalues (ITEs) $\omega_1, \omega_2, \omega_3, \ldots$ for a homogeneous component are different from a component with an inhomogeneity.

Non-destructive testing

Motivation

- What are elastic interior transmission eigenvalues?
- Can we calculate them numerically?

Problem setup

- D bounded open region in \mathbb{R}^2 .
- Boundary Γ consists of a finite number of disjoint, closed, bounded surfaces belonging to class C².
- $D^{\mathrm{ext}} = \mathbb{R}^2 \backslash \overline{D}$ is connected.
- lacksquare ω given frequency.
- ν denotes normal pointing into D^{ext} .
- ϱ_1 , ϱ_2 are densities (given constants).
- λ , μ are given Lamé parameters satisfying $\lambda + 2\mu > 0$, $\mu > 0$.
- $\Delta^* u = \mu \, \Delta u + (\lambda + \mu) \operatorname{grad} \operatorname{div} u$

Scattering by an inhomogeneous media

Solve

$$\begin{array}{cccc} \Delta^* \ u + \omega^2 \varrho_1 u = 0 & \text{in } D^{\text{ext}} \ , \\ \Delta^* \ v + \omega^2 \varrho_2 v = 0 & \text{in } D \ , \\ u = v & \text{on } \Gamma \ , \\ T(u) = T(v) & \text{on } \Gamma \ , \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_p - \mathrm{i} k_p u_p \right) \ , & \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_s - \mathrm{i} k_s u_s \right) = 0 \ , & r = |x| \ . \end{array}$$

- Total field is $u = u_s + u_p + u_i$ with incident field u_i .
- $T(z) = \lambda \operatorname{div}(z)\nu + 2\mu \left(\nu^{\top}\operatorname{grad}\right)z + \mu \operatorname{div}(Qz)Q\nu$ with $Q = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- $k_p^2 = \omega^2/(\lambda + 2\mu), k_s^2 = \omega^2/\mu.$
- Is there an incident field that does not scatter?

Elastic interior transmission eigenvalue problem

- Question is related to the elastic interior transmission problem (ITP).
- If u_i is given such that $u_s + u_p|_{\mathbb{R}^2 \setminus \overline{D}} = 0$, then setting $w = u|_D$ and $v = u_i|_D$ yields the following problem:
- Find a solution $(v, w) \neq (0, 0)$ to the ITP given by

$$\Delta^* w + \omega^2 \varrho_1 w = 0$$
 in D ,
 $\Delta^* v + \omega^2 \varrho_2 v = 0$ in D ,
 $v = w$ on Γ ,
 $T(v) = T(w)$ on Γ .

■ Then $\omega \in \mathbb{C}$ will be an elastic interior transmission eigenvalue (ITE).

History (partial list)

Introduction of ITP:

Kirsch (1986) and Colton & Monk (1988).

Discreteness of ITEs:

Colton & Kirsch & Päivärinta (1989), Rynne & Sleeman (1991), Cakoni & Haddar (2007), Colton & Päivärinta & Sylvester (2007), Kirsch (2009), Cakoni & Haddar (2009), and Hickmann (2012).

Existence of ITEs:

Päivärinta & Sylvester (2009), Kirsch (2009), Cakoni & Gintides & Haddar (2011), Cakoni & Haddar (2011), Cakoni & Kirsch (2011), Bellis & Cakoni & Guzina (2011), and Cossonnière (2011).

Numerical computation of elastic ITEs (recent work)

Inside-outside-duality method: Peters (2016)

Method of fundamental solutions (MFS): Kleefeld & Pieronek (2020)

Finite element method (FEM): Ji & Li & Sun (2018), Xi & Ji (2018), Xi & Ji & Geng (2018), Ji & Li & Sun (2020), Chang & Lin & Wang (2020), Yang & Han & Bi (2020), Yang & Han & Bi & Li & Zhang (2020), and Xi & Ji & Zhang (2021)

■ Boundary element method (BEM): Weger (2018) and Zimmermann (2021)

SOLVING THE ITP

Boundary integral operators

$$\mathsf{SL}_{\kappa}(arphi)(P) \;\; = \;\; \int_{\Gamma} \Phi_{\kappa}(P,q) arphi(q) \; \mathrm{d} s(q) \,, \qquad \qquad P \in \mathcal{D} \,, \ \mathsf{DL}_{\kappa}(arphi)(P) \;\; = \;\; \int_{\Gamma} \left[T_q \left(\Phi_{\kappa}(P,q)
ight)
ight]^{ op} arphi(q) \; \mathrm{d} s(q) \,, \qquad P \in \mathcal{D} \,, \ \end{cases}$$

$$egin{array}{lll} \mathbf{S}_{\kappa}(arphi)(oldsymbol{p}) &=& \int_{\Gamma} \Phi_{\kappa}(oldsymbol{p}, oldsymbol{q}) arphi(oldsymbol{q}) \, \mathrm{d} oldsymbol{s}(oldsymbol{q}) \,, & oldsymbol{p} \in \Gamma \,, \ \ \mathbf{D}_{\kappa}(arphi)(oldsymbol{p}) &=& \int_{\Gamma} \left[T_{oldsymbol{q}} \left(\Phi_{\kappa}(oldsymbol{p}, oldsymbol{q}) \right) \right]^{ op} arphi(oldsymbol{q}) \, \mathrm{d} oldsymbol{s}(oldsymbol{q}) \,, & oldsymbol{p} \in \Gamma \,, \ \ \ \mathbf{D}_{\kappa}^{ op}(oldsymbol{\varphi})(oldsymbol{p}) &=& \int_{\Gamma} T_{oldsymbol{p}} \left(\Phi_{\kappa}(oldsymbol{p}, oldsymbol{q}) \right) arphi(oldsymbol{q}) \, \mathrm{d} oldsymbol{s}(oldsymbol{q}) \,, & oldsymbol{p} \in \Gamma \,, \end{array}$$

and $\Phi_{\kappa}(p, q)$, $p \neq q$ the fundamental solution.

SOLVING THE ITP

Boundary integral equation

- Assume κ^2 is not a Dirichlet eigenvalue of $-\Delta^*$ in D.
- Dirichlet-to-Neumann operator:

$$N_{\kappa} = \left(rac{1}{2}\mathsf{I} + \mathsf{D}_{\kappa}^{ op}
ight)\mathsf{S}_{\kappa}^{-1}$$
 .

■ Then $M(\omega)v = 0$ solves ITP (see Cakoni & Kress) with

$$\textit{M}(\omega) = \textit{N}_{\omega\sqrt{\varrho_1}} - \textit{N}_{\omega\sqrt{\varrho_2}} = \left(\frac{1}{2}\mathsf{I} + \mathsf{D}_{\omega\sqrt{\varrho_1}}^\top\right)\mathsf{S}_{\omega\sqrt{\varrho_1}}^{-1} - \left(\frac{1}{2}\mathsf{I} + \mathsf{D}_{\omega\sqrt{\varrho_2}}^\top\right)\mathsf{S}_{\omega\sqrt{\varrho_2}}^{-1}\,.$$

We use

$$M(\omega) = S_{\omega\sqrt{\varrho_1}}^{-1} \left(\frac{1}{2} I + D_{\omega\sqrt{\varrho_1}} \right) - S_{\omega\sqrt{\varrho_2}}^{-1} \left(\frac{1}{2} I + D_{\omega\sqrt{\varrho_2}} \right) .$$

SOLVING THE ITP

Boundary integral equation

- *E* is the set of all $\omega^2 \rho_1$ and $\omega^2 \rho_2$ that are Dirichlet eigenvalues of $-\Delta^*$ in *D*.
- Assume $\omega^2 \varrho_1, \omega^2 \varrho_2 \notin E$.
- To find ITE, solve the non-linear eigenvalue problem

$$M(\omega)v=0$$
.

- $M(\omega)$ is Fredholm of index zero.
- $M(\omega)$ is analytic on $\mathbb{C}\setminus\{\mathbb{R}^-\cup E\}$.

NUMERICAL SOLUTION

Boundary integral equation

- Subdivide boundary in n_f pieces.
- Define discretization points.
- Approximate boundary pieces.
- Discretize unknown function on each piece.
- Require residual to be zero at $n_c = 3 \cdot n_f$ 'collocation points'.
- Leads to non-linear eigenvalue problem $\mathbf{M}(\omega)\vec{\mathbf{v}} = \vec{\mathbf{0}}$ with $\mathbf{M}(\omega) \in \mathbb{C}^{2n_c \times 2n_c}$.

NUMERICAL SOLUTION

Solving the non-linear eigenvalue problem

Consider non-linear eigenvalue problem

$$\mathbf{M}(\omega)\vec{\mathbf{v}} = \vec{\mathbf{0}}, \quad \vec{\mathbf{v}} \in \mathbb{C}^{2n_c}, \quad \vec{\mathbf{v}} \neq \mathbf{0}, \quad \omega \in \mathbb{B}(\mu, R) \subset \mathbb{C}.$$

- Large scale problem $m \ll 2n_c$ (m is number of eigenvalues including multiplicities).
- Problem can be reduced to linear eigenvalue problem of dimension m (Keldysh's theorem).
- One has to use complex-valued contour integrals.
- See article by W.-J. Beyn (2012).

Parameters

- $\rho_1 = 1, \rho_2 = 4, \mu = 1/16, \lambda = 1/4$
- N = 24, $\ell = 20$, $tol = 10^{-2}$, R = 1/4, $n_f = 16, 20, 32, 40$.
- D: disk with radius 1/2, ellipse with semi-axis 1 and 0.5, deformed ellipse (kite), unit square.

Disk with radius 1/2

ITE	BEM	FEM [13]	FEM [9]	FEM [4]	MFS [6]
ω_1	1.451 303	1.452 482	1.451 948	1.455 078	1.451 304 028
ω_2	1.704 673	1.706 023	1.705 370	1.709214	1.704 638 247
$\omega_{\mathtt{3}}$	1.704 674	1.706 023		1.709214	
ω_{4}	1.984 555	1.986 143		1.989 630	1.984 530 256
ω_{5}	1.984 557	1.986 146		1.989 630	
ω_{6}	2.269 152	2.270 963		2.274 992	2.269 112 085
ω_7	2.269 156				

- BEM yields comparable results to MFS.
- Using only $n_f = 20$ (for ω_1 , ω_2 , and ω_3) and $n_f = 40$ (for ω_4 , ω_5 , ω_6 , and ω_7) yields better results than FEM [9] (h = 1/160), FEM [4] (h = 1/80), and FEM [13] ($h \approx 0.03125$). FEM [10] (h = 0.0125) yields 1.456.
- Remark: FEM [9] converges numerically with order one, but they state order two.

Ellipse with radius semi-axis 1 and 1/2

ITE	BEM	MFS [6]
ω_{1}	1.296 779	1.296 728 137
ω_2	1.302 946	1.302 785 814
ω_3	1.540 739	1.540 896 035
ω_{4}	1.565 357	1.565 151 107

- Comparable results to MFS.
- Used only $n_f = 20$.

Kite (deformed ellipse)

ITE	BEM	MFS [6]
ω_1	0.947 094	0.947
ω_2	1.047417	1.047
ω_3	1.111 296	1.111
ω_{4}	1.235 417	1.235

- Better results than MFS.
- Used only $n_f = 20$.
- BEM better for general domains *D*.

Unit square

ITE	BEM	FEM [13]	FEM [4]	FEM [10]	FEM [9]	MFS [6]
ω_1	1.393 770	1.393 877	1.393874	1.393879	1.394419	1.3938
ω_2	1.618379	1.618 299	1.618 296		1.619 008	1.6182
ω з	1.618379	1.618 299	1.618 296			
ω_{4}	1.801 996	1.802 042	1.802 032			1.8020
ω_5	1.936 157	1.936 138	1.936 134			1.9362

- BEM yields better results than FEM [9] (h = 0.00625).
- Used only $n_f = 16$ and $n_f = 32$ for ω_5 .
- FEM [13] ($h \approx 0.03125$), FEM [4] ($h \approx 0.025$), FEM [10] (h = 0.0125), and FEM [12] (m = 26) better than BEM.

Complex ITEs

D	BEM
Circle	$\begin{array}{c} 1.987189 + 0.283145\mathrm{i} \\ 1.866002 + 0.291556\mathrm{i} \end{array}$
Unit square	$1.866002 + 0.291556\mathrm{i}$

■ Used only $n_f = 20$ and $n_f = 16$, respectively.

SUMMARY AND OUTLOOK

- Presented an alternative method to calculate ITEs for various domains in 2D.
- Used boundary integral equations.
- Results are very accurate with less computational cost.
- Complex-valued ITEs can be calculated.

- Further investigation is needed for the complex-valued ITEs.
- Likewise exterior transmission eigenvalues can be computed.

REFERENCES I

Partial list

- [1] W.-J. Beyn, *An integral method for solving nonlinear eigenvalue problems*, Linear Algebra and its Applications **436**, 3839–3863 (2012).
- [2] F. Cakoni & R. Kress, *A boundary integral equation method for the transmission eigenvalue problem*, Applicable Analysis **96**, 23–38 (2017).
- [3] W.-C. Chang & W.-W. Lin & J.-N. Wang, *Efficient methods of computing interior transmission eigenvalues for the elastic waves*, Journal of Computational Physics **407**, 109227 (2020).
- [4] X. Ji & P. Li & J. Sun, Computation of transmission eigenvalues for elastic waves, arXiv 1802.03687, 1–16 (2018).
- [5] X. Ji & P. Li & J. Sun, Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method, Results in Applied Mathematics 5, 100083 (2020).

REFERENCES II

Partial list

- [6] A. Kleefeld & L. Pieronek, *Elastic transmission eigenvalues and their computation via the method of fundamental solutions*, Applicable Analysis, 1–18 (2020).
- [7] S. Peters, *The Inside-Outside Duality for Elastic Scattering Problems*, Applicable Analysis **96**, 48–69 (2016).
- [8] A.-C. Weger, *Numerische Berechnung von elastischen Streuproblemen in 2D*, Jül Report **4413**, 1–118 (2018).
- [9] Y. Xi & X. Ji, A lowest-order mixed finite element method for the elastic transmission eigenvalue problem, arXiv 1812.0851, 1–16 (2018).
- [10] Y. Xi & X. Ji & H. Geng, A C⁰ IP method of transmission eigenvalues for elastic waves, Journal of Computational Physics **374**, 237–248 (2018).

REFERENCES III

Partial list

- [11] Y. Xi & X. Ji & S. Zhang, A simple low-degree optimal finite element scheme for the elastic transmission eigenvalue problem, arXiv 2101.10783, 1–17 (2021).
- [12] Y. Yang & J. Han & H. Bi, H²-Conforming methods and two-grid discretizations for the elastic transmission eigenvalue problem. Communications in Computational Physics 28, 1366–1388 (2020).

Andreas Kleefeld (ioint work with Maria Zimmermann)

- [13] Y. Yang & J. Han & H. Bi & H. Li & Y. Zhang, Mixed methods for the elastic transmission eigenvalue problem, Applied Mathematics and Computation 374, 125081 (2020).
- [14] M. Zimmermann, Numerische Berechnung von elastischen Transmissionseigenwerten, Master Thesis (2021).

CONTACT INFORMATION

Email

- Do you want to have the slides as pdf?
- Do you have further questions?
- Write an email to a.kleefeld@fz-juelich.de

