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INTRODUCTION
Motivation

Is there an incident field that does not
scatter?

Interior transmission eigenvalues
(ITEs) ω1, ω2, ω3, . . . for a homoge-
neous component are different from
a component with an inhomogeneity.
Non-destructive testing
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INTRODUCTION
Motivation

What are elastic interior transmission eigenvalues?
Can we calculate them numerically?
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INTRODUCTION
Problem setup

D bounded open region in R2 .
Boundary Γ consists of a finite number
of disjoint, closed, bounded surfaces
belonging to class C2 .
D ext = R2\D is connected.
ω given frequency.
ν denotes normal pointing into D ext.
%1, %2 are densities (given constants).
λ, µ are given Lamé parameters
satisfying λ + 2µ > 0, µ > 0.
∆∗u = µ∆u + (λ + µ) grad div u

D

D ext = R2\D

Γ
ν
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INTRODUCTION
Scattering by an inhomogeneous media

Solve

∆∗ u + ω2%1u = 0 in D ext ,

∆∗ v + ω2%2v = 0 in D ,

u = v on Γ ,

T (u) = T (v) on Γ ,

lim
r→∞

√
r (∂r up − ikpup) , lim

r→∞

√
r (∂r us − iksus) = 0 , r = |x | .

Total field is u = us + up + ui with incident field ui .

T (z) = λ div (z)ν + 2µ
(
ν>grad

)
z + µ div(Qz)Qν with Q =

(
0 1
−1 0

)
.

k2
p = ω2/(λ + 2µ), k2

s = ω2/µ.
Is there an incident field that does not scatter?
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INTRODUCTION
Elastic interior transmission eigenvalue problem

Question is related to the elastic interior transmission problem (ITP).
If ui is given such that us + up|R2\D = 0, then setting w = u|D and v = ui |D
yields the following problem:
Find a solution (v ,w) 6= (0,0) to the ITP given by

∆∗w + ω2%1w = 0 in D ,

∆∗ v + ω2%2 v = 0 in D ,

v = w on Γ ,

T (v) = T (w) on Γ .

Then ω ∈ C will be an elastic interior transmission eigenvalue (ITE).
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INTRODUCTION
History (partial list)

Introduction of ITP:
Kirsch (1986) and Colton & Monk (1988).

Discreteness of ITEs:
Colton & Kirsch & Päivärinta (1989), Rynne & Sleeman (1991), Cakoni &
Haddar (2007), Colton & Päivärinta & Sylvester (2007), Kirsch (2009), Cakoni
& Haddar (2009), and Hickmann (2012).

Existence of ITEs:
Päivärinta & Sylvester (2009), Kirsch (2009), Cakoni & Gintides & Haddar
(2011), Cakoni & Haddar (2011), Cakoni & Kirsch (2011), Bellis & Cakoni &
Guzina (2011), and Cossonnière (2011).
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INTRODUCTION
Numerical computation of elastic ITEs (recent work)

Inside-outside-duality method: Peters (2016)

Method of fundamental solutions (MFS): Kleefeld & Pieronek (2020)

Finite element method (FEM): Ji & Li & Sun (2018), Xi & Ji (2018), Xi & Ji &
Geng (2018), Ji & Li & Sun (2020), Chang & Lin & Wang (2020), Yang & Han
& Bi (2020), Yang & Han & Bi & Li & Zhang (2020), and Xi & Ji & Zhang
(2021)

Boundary element method (BEM): Weger (2018) and Zimmermann (2021)
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SOLVING THE ITP
Boundary integral operators

SLκ(ϕ)(P) =

∫
Γ

Φκ(P,q)ϕ(q) ds(q) , P ∈ D ,

DLκ(ϕ)(P) =

∫
Γ

[Tq (Φκ(P,q))]> ϕ(q) ds(q) , P ∈ D ,

Sκ(ϕ)(p) =

∫
Γ

Φκ(p,q)ϕ(q) ds(q) , p ∈ Γ ,

Dκ(ϕ)(p) =

∫
Γ

[Tq (Φκ(p,q))]> ϕ(q) ds(q) , p ∈ Γ ,

D>κ (ϕ)(p) =

∫
Γ

Tp (Φκ(p,q))ϕ(q) ds(q) , p ∈ Γ ,

and Φκ(p,q), p 6= q the fundamental solution.
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SOLVING THE ITP
Boundary integral equation

Assume κ2 is not a Dirichlet eigenvalue of −∆∗ in D.
Dirichlet-to-Neumann operator:

Nκ =

(
1
2

I + D>κ

)
S−1
κ .

Then M(ω)v = 0 solves ITP (see Cakoni & Kress) with

M(ω) = Nω
√
%1 − Nω

√
%2 =

(
1
2

I + D>ω√%1

)
S−1
ω
√
%1
−
(

1
2

I + D>ω√%2

)
S−1
ω
√
%2
.

We use

M(ω) = S−1
ω
√
%1

(
1
2

I + Dω
√
%1

)
− S−1

ω
√
%2

(
1
2

I + Dω
√
%2

)
.
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SOLVING THE ITP
Boundary integral equation

E is the set of all ω2%1 and ω2%2 that are Dirichlet eigenvalues of −∆∗ in D.
Assume ω2%1, ω

2%2 /∈ E .
To find ITE, solve the non-linear eigenvalue problem

M(ω)v = 0 .

M(ω) is Fredholm of index zero.
M(ω) is analytic on C\{R− ∪ E}.
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NUMERICAL SOLUTION
Boundary integral equation

∆1∆2

∆3 ∆4

v2

v8v6

v4

v1

v7

v5

v3

π
4

0

π
2

Subdivide boundary in nf pieces.
Define discretization points.
Approximate boundary pieces.
Discretize unknown function on each piece.
Require residual to be zero at nc = 3·nf ‘collocation points’.
Leads to non-linear eigenvalue problem M(ω)~v = ~0 with M(ω) ∈ C2nc×2nc .
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NUMERICAL SOLUTION
Solving the non-linear eigenvalue problem

Consider non-linear eigenvalue problem

M(ω)~v = ~0 , ~v ∈ C2nc , ~v 6= 0 , ω ∈ B(µ,R) ⊂ C .

Large scale problem m� 2nc (m is number of eigenvalues including
multiplicities).
Problem can be reduced to linear eigenvalue problem of dimension m
(Keldysh’s theorem).
One has to use complex-valued contour integrals.
See article by W.-J. Beyn (2012).
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NUMERICAL RESULTS
Parameters

%1 = 1, %2 = 4, µ = 1/16, λ = 1/4
N = 24, ` = 20, tol = 10−2, R = 1/4, nf = 16,20,32,40.
D: disk with radius 1/2, ellipse with semi-axis 1 and 0.5, deformed ellipse
(kite), unit square.
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NUMERICAL RESULTS
Disk with radius 1/2

ITE BEM FEM [13] FEM [9] FEM [4] MFS [6]
ω1 1.451 303 1.452 482 1.451 948 1.455 078 1.451 304 028
ω2 1.704 673 1.706 023 1.705 370 1.709 214 1.704 638 247
ω3 1.704 674 1.706 023 1.709 214
ω4 1.984 555 1.986 143 1.989 630 1.984 530 256
ω5 1.984 557 1.986 146 1.989 630
ω6 2.269 152 2.270 963 2.274 992 2.269 112 085
ω7 2.269 156

BEM yields comparable results to MFS.
Using only nf = 20 (for ω1, ω2, and ω3) and nf = 40 (for ω4, ω5, ω6, and ω7)
yields better results than FEM [9] (h = 1/160), FEM [4] (h = 1/80), and FEM
[13] (h ≈ 0.03125). FEM [10] (h = 0.0125) yields 1.456.
Remark: FEM [9] converges numerically with order one, but they state order
two.
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NUMERICAL RESULTS
Ellipse with radius semi-axis 1 and 1/2

ITE BEM MFS [6]
ω1 1.296 779 1.296 728 137
ω2 1.302 946 1.302 785 814
ω3 1.540 739 1.540 896 035
ω4 1.565 357 1.565 151 107

Comparable results to MFS.
Used only nf = 20.
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NUMERICAL RESULTS
Kite (deformed ellipse)

ITE BEM MFS [6]
ω1 0.947 094 0.947
ω2 1.047 417 1.047
ω3 1.111 296 1.111
ω4 1.235 417 1.235

Better results than MFS.
Used only nf = 20.
BEM better for general domains D.
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NUMERICAL RESULTS
Unit square

ITE BEM FEM [13] FEM [4] FEM [10] FEM [9] MFS [6]
ω1 1.393 770 1.393 877 1.393 874 1.393 879 1.394 419 1.393 8
ω2 1.618 379 1.618 299 1.618 296 1.619 008 1.618 2
ω3 1.618 379 1.618 299 1.618 296
ω4 1.801 996 1.802 042 1.802 032 1.802 0
ω5 1.936 157 1.936 138 1.936 134 1.936 2

BEM yields better results than FEM [9] (h = 0.00625).
Used only nf = 16 and nf = 32 for ω5.
FEM [13] (h ≈ 0.03125), FEM [4] (h ≈ 0.025), FEM [10] (h = 0.0125), and
FEM [12] (m = 26) better than BEM.
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NUMERICAL RESULTS
Complex ITEs

D BEM
Circle 1.987 189 + 0.283 145i

Unit square 1.866 002 + 0.291 556i

Used only nf = 20 and nf = 16, respectively.
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SUMMARY AND OUTLOOK

Presented an alternative method to calculate ITEs for various domains in 2D.
Used boundary integral equations.
Results are very accurate with less computational cost.
Complex-valued ITEs can be calculated.

Further investigation is needed for the complex-valued ITEs.
Likewise exterior transmission eigenvalues can be computed.
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CONTACT INFORMATION
Email

Do you want to have the slides as pdf?
Do you have further questions?

Write an email to a.kleefeld@fz-juelich.de
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