000893874 001__ 893874
000893874 005__ 20210810182032.0
000893874 0247_ $$2doi$$a10.1021/acs.nanolett.0c04544
000893874 0247_ $$2ISSN$$a1530-6984
000893874 0247_ $$2ISSN$$a1530-6992
000893874 0247_ $$2Handle$$a2128/28335
000893874 0247_ $$2altmetric$$aaltmetric:100875258
000893874 0247_ $$2pmid$$a33621104
000893874 0247_ $$2WOS$$aWOS:000629091100016
000893874 037__ $$aFZJ-2021-02886
000893874 041__ $$aEnglish
000893874 082__ $$a660
000893874 1001_ $$00000-0001-6533-0631$$aBeyer, Andreas$$b0$$eCorresponding author
000893874 245__ $$aQuantitative Characterization of Nanometer-Scale Electric Fields via Momentum-Resolved STEM
000893874 260__ $$aWashington, DC$$bACS Publ.$$c2021
000893874 3367_ $$2DRIVER$$aarticle
000893874 3367_ $$2DataCite$$aOutput Types/Journal article
000893874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627306010_11206
000893874 3367_ $$2BibTeX$$aARTICLE
000893874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893874 3367_ $$00$$2EndNote$$aJournal Article
000893874 520__ $$aMost of today’s electronic devices, like solar cells and batteries, are based on nanometer-scale built-in electric fields. Accordingly, characterization of fields at such small scales has become an important task in the optimization of these devices. In this study, with GaAs-based p–n junctions as the example, key characteristics such as doping concentrations, polarity, and the depletion width are derived quantitatively using four-dimensional scanning transmission electron microscopy (4DSTEM). The built-in electric fields are determined by the shift they introduce to the center-of-mass of electron diffraction patterns at subnanometer spatial resolution. The method is applied successfully to characterize two p–n junctions with different doping concentrations. This highlights the potential of this method to directly visualize intentional or unintentional nanoscale electric fields in real-life devices, e.g., batteries, transistors, and solar cells.
000893874 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893874 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
000893874 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893874 7001_ $$0P:(DE-HGF)0$$aMunde, Manveer Singh$$b1
000893874 7001_ $$0P:(DE-HGF)0$$aFiroozabadi, Saleh$$b2
000893874 7001_ $$0P:(DE-HGF)0$$aHeimes, Damien$$b3
000893874 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b4
000893874 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b5
000893874 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b6$$ufzj
000893874 7001_ $$0P:(DE-HGF)0$$aVolz, Kerstin$$b7
000893874 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.0c04544$$gVol. 21, no. 5, p. 2018 - 2025$$n5$$p2018 - 2025$$tNano letters$$v21$$x1530-6992$$y2021
000893874 8564_ $$uhttps://juser.fz-juelich.de/record/893874/files/acs.nanolett.0c04544.pdf
000893874 8564_ $$uhttps://juser.fz-juelich.de/record/893874/files/Quantitative%20Characterization-Resolved%20STEM.pdf$$yPublished on 2021-02-23. Available in OpenAccess from 2022-02-23.
000893874 909CO $$ooai:juser.fz-juelich.de:893874$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b6$$kFZJ
000893874 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893874 9141_ $$y2021
000893874 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893874 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2019$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2019$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000893874 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000893874 920__ $$lyes
000893874 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000893874 980__ $$ajournal
000893874 980__ $$aVDB
000893874 980__ $$aUNRESTRICTED
000893874 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000893874 9801_ $$aFullTexts